欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (06): 1005-1013.doi: 10.3724/SP.J.1006.2008.01005

• 耕作栽培·生理生化 • 上一篇    下一篇

不同种植方式下氮素营养对陆稻和水稻产量的影响

张亚洁;周彧然;杜斌;杨建昌*   

  1. 扬州大学 / 江苏省作物遗传生理重点实验室, 江苏扬州225009
  • 收稿日期:2007-09-17 修回日期:1900-01-01 出版日期:2008-06-12 网络出版日期:2008-06-12
  • 通讯作者: 杨建昌

Effects of Nitrogen Nutrition on Grain Yield of Upland Rice and Paddy Rice under Different Cultivation Methods

ZHANG Ya-Jie,ZHOU Yu-Ran,DU Bin,YANG Jian-Chang*   

  1. Key Laboratory of Crop Genetics and Physiology, Jiangsu Province / Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2007-09-17 Revised:1900-01-01 Published:2008-06-12 Published online:2008-06-12
  • Contact: YANG Jian-Chang

摘要: 以粳型陆稻中旱3号和粳型水稻扬粳9538为材料, 设置裸地旱种和水种两种方式及低氮(LN, 100 kg hm-2)、中氮(NN, 200 kg hm-2)和高氮(HN, 300 kg hm-2) 3种N素水平, 比较研究了氮素营养对陆稻和水稻产量形成的影响。结果表明, 旱种HN处理下陆稻和水稻的产量以及水种HN处理下水稻的产量较NN有所下降; 但水种HN处理下陆稻的产量较NN增加; 随施N量增加, 水、陆稻在两种种植方式下穗数均增加, 每穗粒数表现不一, 结实率均下降, 但陆稻降幅小于水稻, 陆稻千粒重差异不显著, 而水稻则显著下降。与水种相比, 旱种条件下陆稻的千粒重无显著变化, 而水稻千粒重则显著下降, 水、陆稻旱种的结实率均有所提高, 但陆稻的提高幅度大于水稻。与水稻相比, 陆稻不定根数少, 吸N能力低, 分蘖能力弱, 成穗数少、穗型小, 产量较低。拔节至抽穗期不定根数的增幅大, 叶片含N率下降慢, 花后叶片含N率和剑叶叶绿素(SPAD)值下降快。陆稻光合生产力对水分胁迫的负响应小, 对增施N素正响应大。表明陆稻和水稻对种植方式和N素的响应有明显差异。对陆稻和水稻的产量增产途径进行了讨论

关键词: 陆稻, 水稻, 旱种, 氮素, 产量

Abstract: Upland rice and dry-cultivated paddy rice have been attracted more and more attention because of limited water resources in China. Researches on interaction between water and nitrogen supplies for crop resistance to drought stress has become the hot topic regarding regulation on nutritional physiology. However, there is little information available on effect of nitrogen (N) nutrition on grain yield and its components of upland rice and paddy rice under different cultivation methods. The objective of this study was to evaluate the difference between upland rice and paddy rice and interaction between cultivation methods and N levels. One upland rice cultivar Zhonghan 3 (japonica) and one paddy rice cultivar Yangjing 9538 (japonica) were grown under moist cultivation (MC, control) or bare dry-cultivation (DC) with three N levels, low amount of N (LN, 100 kg ha-1), normal amount of N (NN, 200 kg ha-1), and high amount of N (HN, 300 kg ha-1). The results showed that, compared with NN, the grain yield under HN was lower for both upland and paddy rice under DC and for paddy rice under MC, whereas higher for upland rice under MC. With the increase in N levels, upland rice and paddy rice showed higher productive tillers, more or fewer spikelets per panicle, lower percentage of ripened grains under two cultivation methods. However, the percentage of ripened grains was reduced more for paddy rice than for upland rice. There was no significant difference in 1 000-grain weight for upland rice among three N levels, whereas grain weight was reduced with the increase in N levels. Compared with MC, DC showed no significant difference in grain weight for upland rice, whereas a significant decrease for paddy rice. DC significantly increased the percentage of ripened grains for both upland and paddy rice, and that were more for upland rice than for paddy rice. Compared with paddy rice, upland rice showed less number of adventitious roots, lower nitrogen absorption ability and lower productive tillering ability, fewer pani-cles, fewer spikelets per panicle and lower grain yield. However, upland rice exhibited quicker increase in adventitious roots and slower declining in leaf nitrogen content from jointing to heading, and a faster declining speed in chlorophyll content (SPAD value) after flowering. Also, upland rice had less negative response to water stress and more positive response to N. The results suggest that the response to cultivation methods and N levels varies largely between upland rice and paddy rice. The approaches to in-crease the grain yield of both paddy and upland rice were discussed.

Key words: Upland rice, Paddy rice, Dry cultivation, Nitrogen, Yield

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[12] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[13] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[14] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[15] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!