欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 87-94.doi: 10.3724/SP.J.1006.2011.00087

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

ET-ISJ标记的开发及陆地棉遗传图谱构建

林刚,张建,张轲,藤中华,张正圣*   

  1. 西南大学农学与生物科技学院 / 农业部生物技术与作物品质改良重点开放实验室,重庆400716
  • 收稿日期:2010-04-16 修回日期:2010-07-29 出版日期:2011-01-12 网络出版日期:2010-10-09
  • 通讯作者: 张正圣, E-mail: zhangzs@swu.edu.cn, Tel: 13883608797
  • 基金资助:

    本研究由国家自然科学基金项目(30871556, 30900910)和国家高技术研究发展计划(863计划)项目(2006AA10Z1D3)资助。

Development of Exon-Targeted Intron-Exon Splicing Conjunction (ET-ISJ) Marker and Establishment of Upland Cotton Genetic Map

LIN Gang,ZHANG Jian,ZHANG Ke,TENG Zhong-Hua,ZHANG Zheng-Sheng*   

  1. College of Agronomy and Biotechnology / Key Laboratory of Biotechnology & Crop Quality Improvement, Ministry of Agriculture, Southwest University, Chongqing 400716, China
  • Received:2010-04-16 Revised:2010-07-29 Published:2011-01-12 Published online:2010-10-09
  • Contact: ZHANG Zheng-Sheng,E-mail:zhangzs@swu.edu.cn,Tel:13883608797

摘要: 根据植物结构基因外显子拼接位点的保守序列,设计扩增外显子的ET-ISJ (exon targeted intron-exon splice junction)标记引物。利用1 280对ET-ISJ引物组合,在陆地棉品种渝棉1号和T586中,筛选获得69对多态性引物组合,占引物组合的5.4%。用多态性ET-ISJ引物组合检测(渝棉1号×T586)F2:7重组近交系群体,得到70个位点。以70个ET-ISJ标记位点与523个SSR、59个IT-ISJ、29个SRAP和8个形态标记进行连锁分析,构建的遗传连锁图谱包括59个连锁群和673个位点(68个ET-ISJ、510个SSR、58个IT-ISJ、29个SRAP和8个形态标记)。连锁图覆盖3 216.7 cM,占棉花基因组的72.3%,标记间平均长度为4.8 cM。68个ET-ISJ标记分布于20条染色体。研究表明ET-ISJ标记多态性较高、稳定性好,可有效用于棉花与其他植物遗传连锁图谱构建。

关键词: 陆地棉, 外显子定靶内含子-外显子剪接位点标记, 遗传图谱

Abstract: Cotton is the leading fiber crop in the world, and upland cotton contributes over 95% of cotton production. The genetic map of upland cotton is far from saturated, so it is necessary to develop new markers for it. ET-ISJ (exon targeted intron-exon splice conjunctions) maker primers were designed according to the conserved intron-exon splicing junction sequences. A total of 1 280 ET-ISJ primer combinations were used to screen polymorphism between upland cotton cultivar Yumian 1 and T586, and 69 of which showed polymorphism, accounting for 5.4% of total primer combinations. The 69 polymorphic ET-ISJ primer combinations were used to detect (Yumian 1 × T586) F2:7 recombinant inbred line population, and 70 ET-ISJ loci were obtained. Linkage analysis was conducted on 70 ET-ISJ loci, 523 SSR, 59 IT-ISJ, 29 SRAP and 8 morphological loci, and a linkage map including 59 linkage groups and 673 loci (68 ET-ISJ, 510 SSR, 58 IT-ISJ, 29 SRAP and 8 morphological loci) was established. The linkage map covered 3 216.7 cM, accounting for 72.3% of cotton genome, with an average interval of 4.8 cM between two markers. Sixty-eight ET-ISJ loci were located on 20 chromosomes.The present study demonstrated that ET-ISJ markers are stable, relatively-high polymorphic, and able to be effectively applied in genetic map construction of cotton and other plant’s.

Key words: Upland cotton (Gossypium hirsutum L.), ET-ISJ, Genetic map

[1]Chen Z J, Scheffler B E, Dennis E, Triplett B A, Zhang T Z, Guo W Z, Chen X Y, Stelly D M, Rabinowicz P D, Town C D, Arioli T, Brubaker C, Cantrell R G, Lacape J M, Ulloa M, Chee P, Gingle A R, Haigler C H, Percy R, Saha S, Wilkins T, Wright R J, Deynze A V, Zhu Y X, Yu S X, Abdurakhmonov I, Katageri I, Kumar P A, Rahman M, Zafar Y, Yu J Z, Kohel R J, Wendel J F, Paterson A H. Toward sequencing cotton (Gossypium) genomes. Plant Physiol, 2007, 145: 1303–1310
[2]Thanksley S D, Hewitt J. Use of molecular markers in breeding for soluble solids content in tomato-are-examination. Theor Appl Genet, 1998, 75: 811–823
[3]Rong J K, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X, Garza J J, Marler B S, Park C H, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X, Zhu L, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389–417
[4]Guo W Z, Cai C P, Wang C B, Zhao L, Wang L, Zhang T Z. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics, 2008, 9: 314
[5]Lacape J M, Jacobs J, Arioli T, Derijcker R, Forestier-Chiron N, Llewellyn D, Jean J, Thomas E, Viot C. A new interspecific, Gossypium hirsutum & Gossypium barbadense, RIL population: Towards a unified consensus linkage map of tetraploid cotton. Theor Appl Genet, 2009, 119: 281–292
[6]Ulloa M, Meredith W R. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci, 2000, 4: 161–170
[7]Ulloa M, Meredith W R, Shappley Z W, Kahler A L. RFLP genetic linkage maps from four F2:3 populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet, 2002, 104: 200–208
[8]Zhang Z S, Hu M C, Zhang J, Liu D J, Zhang K, Wang W, Wan Q. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in (Gossypium hirsutum L.). Mol Breed, 2009, 24: 49–61
[9]Lin Z X, He D H, Zhang X L, Nie Y C, Feng C D, Stewart J M. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed, 2005, 124: 180–187
[10]Zheng J, Zhang Z S, Chen L, Wan Q, Hu M C, Wang W, Zhang K, Liu D J, Chen X, Wei X Q. Intron-targeted intron-exon splice conjunction (IT-ISJ) marker and its application in construction of upland cotton linkage map. Agric Sci China, 2008, 7: 1172–1180
[11]Wan Q, Zhang Z S, Hu M C, Chen L, Liu D J, Chen X, Wang W, Zheng J. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance. Euphytica, 2007, 158: 241–247
[12]Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M,Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91–99
[13]Van Ooijen J W, Voorrips R E. JoinMap 3.0, Software for the Calculation of Genetic Linkage Maps. Plant Research International, Wageningen, the Netherlands, 2001
[14]Voorrips R E. MapChart 2.2: Software for the Graphical Presentation of Linkage Maps and QTLs. Plant Research International, Wageningen, The Netherlands, 2006
[15]Reinisch A J, Dong J M, Brubaker C L, Stelly D M, Wendel J F, Paterson A H. A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics, 1994, 38: 829–847
[16]Weining S, Langridge P. Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor Appl Genet, 1991, 82: 209–216
[17]Hawkins J D. A survey on intron and exon length. Nucl Acids Res, 1998, 16: 9893–9905
[18]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455–461
[1] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[2] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[3] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[4] 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184.
[5] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[6] 曾新颖,郭建斌,赵姣姣,陈伟刚,邱西克,黄莉,罗怀勇,周晓静,姜慧芳,黄家权. 花生籽仁大小相关性状QTL定位[J]. 作物学报, 2019, 45(8): 1200-1207.
[7] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
[8] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[9] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[10] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[11] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[12] 彭强,李佳丽,张大双,姜雪,邓茹月,吴健强,朱速松. 不同环境基于高密度遗传图谱的稻米外观品质QTL定位[J]. 作物学报, 2018, 44(8): 1248-1255.
[13] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
[14] 朱国忠,张芳,付洁,李乐晨,牛二利,郭旺珍. 适于陆地棉品种身份鉴定的SNP核心位点筛选与评价[J]. 作物学报, 2018, 44(11): 1631-1639.
[15] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!