欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 95-104.doi: 10.3724/SP.J.1006.2011.00095

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用基因芯片技术筛选棉纤维伸长相关基因

李龙云1,2,于霁雯1,*,翟红红1,黄双领1,李兴丽1,张红卫1,张金发3   

  1. 1 中国农业科学院棉花研究所,农业部棉花遗传改良重点实验室,河南安阳 455000;2 西北农林科技大学农学院,陕西杨凌712100;3 美国新墨西哥州立大学植物与环境科学部,美国新墨西哥州 80003
  • 收稿日期:2010-03-12 修回日期:2010-08-05 出版日期:2011-01-12 网络出版日期:2010-10-09
  • 通讯作者: 于霁雯, E-mail: yujw666@hotmail.com; 喻树迅, E-mail: yu@cricaas.com.cn, Tel: 0372-2562275
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10A109, 2006AA100105)资助。

Identification of Fiber Length-Related Genes Using Cotton Oligonucleotide Microarrays

LI Long-Yun1,2,YU Ji-Wen1,*,ZHAI Hong-Hong1,HUANG Shuang-Ling1,LI Xing-Li1,ZHANG Hong-Wei1,ZHANG Jin-Fa3,YU Shu-Xun1,*   

  1. 1 Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, China; 2 College of Agronomy, Northwest A&F University, Yangling 712100, China; 3 Department of Plant and Enviromental Science, New Mexico State University, Las Cruces 80003, New Mexico, USA
  • Received:2010-03-12 Revised:2010-08-05 Published:2011-01-12 Published online:2010-10-09
  • Contact: YU Wen-wen,E-mail:yujw666@hotmail.com;YU Shu-xun,E-mail:yu@cricaas.com.cn,Tel:0372-2562275

摘要: 从回交近交系(backcross inbred lines, BIL)群体中选取纤维长度差异较大的两个系NMGA-062 (33.03 mm)和 NMGA-140 (25.87 mm),利用Affymetrix棉花基因芯片,分析其开花后10 d (DPA, days post anthesis)棉纤维伸长相关基因表达谱。在24 029条转录本中,两材料间差异表达的转录本有7 282条,占总数的30.31%;其中差异表达倍数在2倍或2倍以上的转录本有3 993条,占筛选转录本总数的16.62%,功能分类表明这些转录本主要包括功能预测基因(15.57%)、翻译、核糖体结构相关基因(13.54%)和翻译后修饰、蛋白质转换相关基因(9.29%)3大类。为了验证芯片数据的可信性,8个差异表达显著的基因(Ghi.10655.1.S1_s_at, ACO1, ARF1, SAHH, TUA6, TUA7, β-tub1, β-tub10)被用于实时荧光定量PCR。两种检测手段表现出一致性。随后,利用实时荧光定量PCR对3个与棉纤维相关基因(ARF1, β-tub1, β-tub10)在纤维发育不同时期(5、10、15、20和25 DPA)的表达模式进行了研究,结果表明,3个基因在纤维伸长发育时期(10和15 DPA)大量表达,推测这3个基因可能与棉纤维伸长有重要关系。

关键词: 基因芯片, 纤维伸长相关基因, 差异表达基因, 实时荧光定量PCR

Abstract: Gossypium barbadense L. is known for its superior fiber quality including long fiber and their quantitative trait loci (QTL) have been reported. However, little is known about the molecular genetic basis of fiber quality traits. The objective of the present study was to identify differentially expressed genes in the rapid fiber elongation stage (10 days post-anthesis, 10 DPA) using a comparative microarray analysis between two backcross inbred lines (BIL) with contrasting fiber lengths. The two BIL lines, NMGA-062 (33.03 mm) and NMGA-140 (25.87 mm), were selected based on a 3-year field trial in four environments.  The Affymetrix Cotton GeneChip was then used to perform a transcriptome analysis of 24 029 transcripts in developing fibers (10 DPA). Among the transcripts 7 282 (30.31%) showed a significant differential expression (DE) and 3 993 (16.62%) showed 2-fold or higher levels of expression changes between the two BIL lines. Through quantitative RT-PCR analyses on different plant organs and developing fibers of 10 DPA, eight selected DE genes, including Ghi.10655.1.S1_s_at, ACO1, ARF1, SAHH, TUA6,TUA7, β-tub1, and β-tub10, all displayed similar results to theses of the microarray analysis. This indicated that the comparative microarray results were biologically reproducible. Quantitative RT-PCR analyses were also performed at five fiber development stages from 5 to 25 DPA on ARF1, β-tub1, and β-tub10. The results indicated that they were all highly expressed in a period of fast fiber elongation and primary cell wall synthesis (at 10–15 DPA), implicating their roles in fiber elongation. This study represents the first investigation using a microarray analysis to compare differential gene expressions between near-isogenic lines with contrasting fiber quality. It provided a list of putative candidate genes for further studies in identifying genes responsible for fiber traits and developing molecular markers for marker-assisted breeding.

Key words: Affymetrix microarray, Fiber length-related genes, Differential expressed genes, Quantitative RT-PCR

[1]Xiang S-K(项时康), Yu N(余楠), Hu Y-C(胡育昌), Tang S-R(唐淑荣), Xiong Z-W(熊宗伟), Yang W-H(杨伟华). Discussion on the current situation of cotton quality in China. Acta Gossypii Sin (棉花学报), 1999, 11(1): 1–10 (in Chinese with English abstract)
[2]Ferguson D L, Turley R B. Comparison of protein profiles during cotton Gossypium hirsutum L. fiber cell development with partial sequences of two proteins. Agric Food Chem, 1996, 44: 4022–4027
[3]Schuber A M, Benedict C R. Cotton fiber development kinetics of cell elongation and secondary wall thickening. Crop Sci, 1973: 704–709
[4]Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361–1366
[5]Basra A S, Malik C P. Development of the cotton fiber. Int Rev Cytol, 1984, 89: 65–113
[6]Shang-Guan X-X(上官小霞), Wang L-J(王凌健), Li Y-E(李燕娥), Liang Y-S(梁运生). Progress in studies on molecular mechanism of cotton fiber development and quality improvement. Cotton Sci (棉花学报), 2008, 20(1): 62–69 (in Chinese with English abstract)
[7]Luo D(罗达). Latest advances in mechanisms of cotton fiber development from China. Mol Plant Breed (分子植物育种), 2006, 4(3): 1–3 (in Chinese with English abstract)
[8]Zhang H(张辉), Tang W-K(汤文开), Tan X(谭新), Gong L-L(龚路路), Li X-B(李学宝). Progresses in the study of gene regulation of cotton fiber development. Chin Bull Bot (植物学通报), 2007, 24(2): 127–133 (in Chinese with English abstract)
[9]Li C H, Zhu Y Q, Meng Y L,Wang J W, Xu K X, Zhang T Z, Chen X Y. Isolation of genes preferentially expressed in cotton fibers by cDNA filter array and RT-PCR. Plant Sci, 2002, 163: 1113–1120
[10]Arpat A, Waugh M, Sullivan J P, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing R, Wilkins T. Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol, 2004, 54: 911–929
[11]Zhao G R, Liu J Y. Isolation of a cotton RGP gene: a homolog of reversibly glycosylated polypeptide highly expressed during fiber development. Biochim Biophvs Acta, 2002, 1574: 370–374
[12]Gou J Y, Wang L J, Chen S P, Hu W L, Chen X Y. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res, 2007, 17: 422–434
[13]Wang HY, Yu Y, Chen ZL, Xia GX . Functional characterization of Gossypiurn hirsuturn profilin 1 gene (GhPEN1) in tobacco suspensioncells. Characterization of in vivo functions of a cotton profiling gene. Planta, 2005, 222: 594–603
[14]Li X B, F'an X P, Wang X L, Cai L, Yang W C. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005, 17: 859–875
[15]Li X B, Cai L, Cheng N H, Liu J W. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physio1, 2002, 130: 666–674
[16]Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 2006, 18: 651–664
[17]Ouyang B, Yang T, Li H X, Zhang L, Zhang Y Y, Zhang J H, Fei Z J, Ye Z B. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot, 2007, 1: 1–14
[18]Yin H Y, Zhao Y C, Zhang Y, Zhang H W, Xu L Z, Zou Z, Yang W P, Cheng J, Zhou Y X. Genome-wide analysis of the expression profile of Saccharomyces cerevisiae in response to treatment with the plant isoflavone, wighteone, as a potential antifungal agent. Biotechnol Lett, 2006, 28: 99–105
[19]Chaudhary B, Hovav R, Rapp R, Verma N, Udall J A, Wendel J F. Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense. Evol Dev, 2008, 10: 567–582
[20]Hovav R, Udall J A, Hovav E, Rapp R, Flagel L, Wendel J F. A majority of cotton genes are expressed in single-celled fiber. Planta, 2008: 319–329
[21]Jiang J-X(蒋建雄), Zhang T-Z(张天真). Extraction of total RNA in cotton organs with CTAB-acidic phenolic method. Cotton Sci (棉花学报), 2003, 15(3): 166–167 (in Chinese with English abstract)
[22]Wang H-S(王洪水), Hou X-S(侯相山). Research progress of gene chip technology. J Anhui Agri Sci (安徽农业科学), 2007 ,35( 8) : 2241- 2243, 2245(in Chinese with English abstract)
[23]Udall J A, Flagel L E, Cheung F, Woodward A W, Hovav R, Rapp R A, Swanson J M, Lee J J, Gingle A R, Nettleton D, Town C D, Chen Z J, Wendel J F. Spotted cotton oligonucleotide microarrays for gene expression analysis. BMC Genomics, 2007, 8: 1471–2164
[24]She Y-B(佘义斌), Zhu Y-C(朱一超), Zhang T-Z(张天真), Guo W-Z(郭旺珍). Cloning, expression, and mapping of S-adenosyl-L-homocysteine hydrolase (GhSAHH) cDNA in Cotton. Acta Agron Sin (作物学报), 2008, 34(6): 958–964 (in Chinese with English abstract)
[25]Dixon D C, Seagull R W, Triplett B A. Changes in the accumulation of α-and β-tubulin isotypes during cotton fiber development. Plant Physiol, 1994: 1347–1353
[26]Li Y L, Sun J, Li C H, Zhu Y Q, Xia G X. Preferential expression of a beta-tubulin gene in developing cotton fibers. Cotton Sci, 2002, 14 (suppl): 43
[27]Ji S J, Lu Y C, Li J, Wei G, Liang X J, Zhu Y X. A-beta-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Biochem Biophys Res Commun, 2002, 296: 1245–1250
[28]Yang Z B. Small GTPases: Versatile signaling switches in plants. Plant Cell, 2002, 14(suppl): 375–388
[29]Ren M-Z(任茂智), Chen Q-J(陈全家), Zhang R(张锐), Guo S-D(郭三堆). The structural characteristics, alternative splicing and genetic expression analysis of ADP-ribosylation 1 factor1 (arf1) in cotton. Acta Genet Sin (遗传学报), 2004, 31(8): 850–857 (in Chinese with English abstract)
[1] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[2] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[3] 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081.
[4] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[5] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[6] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[7] 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024.
[8] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[9] 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660.
[10] 高世武,傅志伟,陈云,林兆里,许莉萍,郭晋隆. 甘蔗热带种金属硫蛋白家族基因的克隆及响应重金属胁迫的表达分析[J]. 作物学报, 2020, 46(02): 166-178.
[11] 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175.
[12] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[13] 李乐晨,朱国忠,苏秀娟,郭旺珍. 适于海岛棉指纹图谱构建的SNP核心位点筛选与评价[J]. 作物学报, 2019, 45(5): 647-655.
[14] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[15] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!