欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 1949-1955.doi: 10.3724/SP.J.1006.2011.01949

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甜菜nia基因的克隆及不同氮素形态诱导的差异表达

丁广洲1,2,侯静2,陈丽1,马凤鸣2,*,陈连江1,*   

  1. 1 中国农业科学院甜菜研究所, 黑龙江哈尔滨 150080; 2东北农业大学, 黑龙江哈尔滨 150030
  • 收稿日期:2011-04-02 修回日期:2011-07-15 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 马凤鸣, E-mail: fengming_ma@sohu.com, Tel: 0451-55191947; 陈连江, E-mail: chen4004@163.com, Tel: 0451-86609481
  • 基金资助:

    本研究由国家自然科学基金项目(30571096)资助。

Cloning of nia Gene and Its Differential Expression Induced by Different Nitrogen Forms in Sugar Beet (Beta vulgaris L.)

DING Guang-Zhou1,2, HOU Jing2,CHEN Li1,MA Feng-Ming2,*,CHEN Lian-Jiang1,*   

  1. 1 Sugar Beet Institute of Chinese Academy of Agricultural Sciences, Harbin 150080, China; 2 College of Agriculture, Northeast Agricultural University, Harbin 150030, China
  • Received:2011-04-02 Revised:2011-07-15 Published:2011-11-12 Published online:2011-09-06
  • Contact: 马凤鸣, E-mail: fengming_ma@sohu.com, Tel: 0451-55191947; 陈连江, E-mail: chen4004@163.com, Tel: 0451-86609481

摘要: 利用同源序列克隆方法从二倍体甜菜品种Ty7中获得氮素诱导nia基因片段,通过RACE技术克隆nia基因全长序列,该基因ORF长度2 718 bp,编码905个氨基酸,并已在GenBank上登录(EU163265),基因组中nia以低拷贝数存在。nia编码蛋白的等电点为6.12,推测分子量为102 kD,以NADH为电子供体。为揭示不同氮素形态和处理对甜菜nia基因表达的影响,采用半定量PCR方法检测不同氮素形态诱导nia基因mRNA的表达,同时测定酶活力。结果表明,当铵态氮诱导nia基因时,低浓度的铵离子能促进基因的表达,过高浓度的铵离子抑制基因的表达。当硝态氮诱导nia基因时,随处理浓度的增加,nia的表达加强,呈正相关关系。用30 mmol L–1硝态氮诱导4 h后,nia基因表达达最高值,约在6 h后,表达明显下降。

关键词: nia基因克隆, 氮素形态和处理, 基因表达

Abstract: From diploid species Ty7, a cDNA clone related to nitrate reduction was isolated by Homology-based cloning. According to its sequences information, a novel full-length cDNA termed nia (accession number: EU163265) was obtained by using rapid amplification of cDNA ends (RACE). Nia was 3 247 bp long containing a 2 718 bp ORF, encoded 905 amino acids with a theoretical molecular weight of 102 kD and an isoelectric point of 6.12. Southern bloting proved that nia gene of Ty7 existed in the form of low copies. It was also proved that this clone was the style of NADH-NR. To reveal the effect of nitrate and ammonium nitrogen on nia expression, we determined NR activity in sugar beet under the treatment of nitrate and ammonium. Gene transcripts of nia were detected by semi-quantitative PCR. Efficiency of mRNA synthesis from each sample was estimated by quantitative PCR of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The results showed that when nia gene was induced by ammonium, the gene expression was promoted with low concentration of ammonium ion, while inhibited by high concentration of ammonium ion. When nia gene was induced by nitrate, being positively correlated with the concentration, the gene expression was enhanced with the increase of the concentration. By 30 mmol L–1 nitrate induction for four hours, nia gene expression reached the highest value, and at about six hours of induction, the expression decreased significantly.

Key words: Nia gene cloning, Nitrogen form and processing, Gene differential expression

[1]Crawford N M, Arst H N Jr. The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet, 1993, 27: 115–146
[2]Crawford N M, Campbell W H, Davis R W. Nitrate reductase from squash: cDNA cloning and nitrate regulation. Proc Natl Acad Sci USA, 1986, 83: 8073–8076
[3]Melzer J M, Kleinhofs A, Warner R L. Nitrate reductase regulation: effects of nitrate and light on nitrate reductase mRNA accumulation. Mol Gen Genet, 1989, 217: 341–346
[4]Crawford N M. Nitrate: nutrient and signal for plant growth. Plant Cell, 1995, 7: 859–868
[5]Tucker D E, Allen D J, Ort D R. Control of nitrate reductase by circadian and diurnal rhythms in tomato. Planta, 2004, 219: 277–285
[6]Vaucheret H, Vincenta M, Kronenberger J, Caboche M, Rouzé P. Molecular cloning and characterization of the two homeologous genes coding for nitrate reductase in tobacco. Mol Gen Genet, 1989, 216: 10–15
[7]Hoff T, Stummann B M, Henningssen K W. Cloning and expression of gene encoding a root specific nitrate reductase in bean (Phaseolus vulgaris). Physiol Plant, 1991, 82: 197–204
[8]Jensen P E, Hoff T, Moiler M G, Stummann B M, Henningsen K W. Identification and characterization of a nitrate reduetase gene from bean (Phaseolus vulgaris) contgxning four introns. Physiol Plant, 1994, 92: 613–623
[9]Jensen P E, Hoff T, Stummann B M, Henningsen K W. Functional analysis of two bean nitrate reductase promoters in transgenic tobacco. Physiol Plant, 1996, 96: 357–358
[10]Prosser I M, Lazarus C M. Nucleotide sequence of a spinach nitrate reductase cDNA. Plant Mol Biol, 1990, 15: 187–190
[11]Tamura N, Takahashi H, Takeba G, Satoi T, Nakagawa H. The nitrate reductase gene isolated from DNA of cultured spinach cells Biochim Biophys Acta, 1997, 1338: 151–155
[12]Hyde G E, W H Campbell. High-level expression in Escherichia coli of the catalytically active flavin domain of corn leaf NADH: nitrate reductase and its comparison to human NADH: cytochrome b5 reductase. Biochem Biophys Res Commun, 1990, 168: 1285–1291
[13]Cherel I, Gonneau M, Meyer C, Pelsy F, Caboche M. Biochemical and immunological characterization of nitrate reduetese deficient nia mutants of Nicotiana plumbaginifolia. Plant Physiol, 1990, 92: 659–665
[14]Yamamoto-Katou A, Katou S, Yoshioka H, Doke N, Kawakita K. Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana Plant Cell Physiol, 2006, 47: 726–735
[15]Cheng C L, Acedo G N, Dewdney J, Goodman H M. Differential expression of the two Arabidopsis nitrate reductase genes. Plant Physiol, 1991, 96: 275–279
[16]Wilkinson J Q, Crawford N M. Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase Mol Gen Genet, 1993, 239: 289–297
[17]Choi H, Kieinhofs A, An G. Nucleotide sequence of rice nitrate reductase gene. Plant Mol Biol, 1989, 13: 731–733
[18]Wu S, Lu Q, Kriz A L and Harper J E. Identification of cDNA clones corresponding to two inducible nitrate reductase genes in soybean: analysis in wild-type and nr1 mutant. Plant Mol Biol, 1995, 29: 491–506
[19]Daniel-Vedele F, Dorbe M F, Caboche M, Rouze P. Cloning and analysis of the tomato nitrate reductase-encoding gene: protein domain structure and amino acid homologies in higher plants. Plant Gene, 1989, 85: 371–380
[20]Miyazaki J, Juricek M, Angelis K, Schnorr K M, Kleinhofs A,Warner R L. Characterrization and sequence of a novel nitrate reductase from barley. Mol Gen Genet, 1991, 228: 329–334
[21]Schnorr K M, Juricek M, Huang C, Culley D,Kleinhofs A. Analisis of barley nitrate reductase cDNA and genomic clones. Mol Gen Genet, 1991, 227: 411–416
[22]Fukuoka H, Ogawa T, Minami H, Yano H, Ohkawa Y. Developmental stage-specific and nitrate independent regulation of nitrate reductase gene expression in rapeseed. Plant Physiol, 1996, 111: 39–47
[23]Tsai C B, Kaiser W M, Kaldenhoff R. Molecular cloning and characterization of nitrate reductase from Ricinus communis L. heterologously expressed in Pichia pastoris. Planta, 2003, 217: 962–700
[24]Sun F F, Hou X L, Li Y, Yang X D. Molecular cloning and characterization of nitrate reductase gene from non-heading Chinese cabbage Sci Hortic, 2008, 119: 1–10
[25]Salamoubat M, Budang H D. Analysis of the petunia nitrate reductase apoenzyme-encoding gene: a first step for sequence modification analysis. Gene, 1993, 128: 147–154
[26]Chen W(陈薇), Zhang D-Y(张德颐). Extraction, mensuration and purification of nitrate reductase in plant tissues. Plant Physiol Commun (植物生理学通讯), 1980, 16(4): 45–49 (in Chinese with English abstract)
[27]Ma F-M(马凤鸣), Gao J-G(高继国), Jiang F-C(姜福臣). Nitrate uptake and its relation to nitrate reductase activity in sugar beet (Beta vulgaris L.) seedlings at cotyledon stage. Acta Agron Sin (作物学报), 1996, 22(6): 681–687 (in Chinese with English abstract)
[28]Wang L-Q(王利群), Wang Y(王勇), Dong Y(董英), Wang W-B(王文兵). Induced activity of nitrate reductase by nitrate and cloning of nitrate reductase gene. Chin J Biotechnol (生物工程学报), 2003, 19(5): 632–635 (in Chinese with English abstract)
[29]Mesnard F, Ratcliffe R G. NMR analysis of plant nitrogen metabolism. Photosynth Res, 2005, 83: 163–180
[30]Li J, Xue L X, Yan H X, Wang L, Liu L, Lu Y, Xie H. The nitrate reductase gene-switch: a system for regulated expression in transformed cells of Dunaliella salina. Gene, 2007, 403: 132–142
[1] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[2] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[3] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[4] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[5] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[6] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[7] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[8] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[9] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[10] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[11] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[12] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[13] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[14] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[15] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!