欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 1942-1948.doi: 10.3724/SP.J.1006.2011.01942

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

强筋小麦分子标记多重PCR体系的构建与应用

梁强,张晓科*,尉倩,王晓龙,张晶,孙道杰,付晓洁   

  1. 西北农林科技大学农学院 / 国家小麦改良中心杨凌分中心,陕西杨凌 712100
  • 收稿日期:2011-04-27 修回日期:2011-07-15 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 张晓科, E-mail: zhangxiaoke66@126.com
  • 基金资助:

    本研究由引进国际先进农业技术计划(948计划)项目(2006-G2), 财政部农业部现代农业小麦产业技术体系建设专项(nycytx-03)和西北农林科技大学唐仲英育种基金资助。

Establishment and Application of Multiplex PCR System Based on Molecular Markers of Glutenin Subunit Genes (Loci) Related to Strong-gluten in Wheat

LIANG Qiang,ZHANG Xiao-Ke*,WEI Qian,WANG Xiao-Long,ZHANG Jing,SUN Dao-Jie,FU Xiao-Jie   

  1. College of Agriculture, Northwest A&F University / Yangling Sub-center of National Wheat Improvement Center, Yangling, Shaanxi 712100, China
  • Received:2011-04-27 Revised:2011-07-15 Published:2011-11-12 Published online:2011-09-06
  • Contact: 张晓科, E-mail: zhangxiaoke66@126.com

摘要: 面筋强度与小麦高低分子量谷蛋白亚基种类(组合)密切相关。以12个已知亚基基因组成的品种为对照,选用基因(位点)AxnullBx7OEDx5Glu-A3dGlu-B3iGlu-B3的标记,构建多重PCR体系。以该体系检测对照的结果与已知基因型完全一致,一次PCR可同时间接检测7个与强筋有关基因(位点)Ax1/Ax2*Bx7OEDx5Glu-A3dGlu-B3iGlu-B3。对62个陕西小麦品种的检测结果表明,优质强筋亚基基因(位点)Ax1/Ax2*Dx5Glu-A3dGlu-B3iGlu-B3的比例依次为56.5%、9.6%、33.9%、1.6%和64.4%,所有品种均不含Bx7OE,携带0、1、2和3个及以上基因(位点)的品种分别占6.5%、33.9%、48.3%和11.3%。说明聚合多个强筋亚基基因(位点)的品种频率较低,通过优质亚基基因的聚合育种,可望改善陕西小麦品种的面筋品质。本研究所构建的强筋小麦分子标记检测的多重PCR体系检测结果稳定且可靠,可用于小麦种质资源的快速评价和强筋小麦分子辅助选育。

关键词: 陕西省小麦品种, 分子标记, 多重PCR体系

Abstract: Wheat strong-gluten quality is closely correlated with combinations of high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS). The multiplex PCR system is a rapid and efficient approach to evaluate wheat germplasm and its quality in wheat. In this study, we developed a multiplex PCR system confering molecular markers on Ax1/Ax2*, Dx5, Glu-A3d, Glu-B3i genes, and Glu-B3 locus and validated it with 12 cultivars with known subunit at each locus. This multiplex PCR system was proved to be effective and stable to amplify target bands for these genes (locus), and used to evaluate the glutenin subunit genes (locus) accociated with strong-gluten in 62 major cultivars in wheat prodution in Shaanxi Province, China. The results showed that the frequencies of genes Ax1/Ax2*, Dx5, Glu-A3d, Glu-B3i, and locus Glu-B3 in the 62 cultivars were 56.5%, 9.6%, 33.9%, 1.6%, and 64.4%, respectively, whereas gene Bx7OE was not found. Most of the cultivars carried two-gene (locus) combinations with the frequency of 48.3%, a few cultivars carried a single gene or locus (33.9%). The frequency of cultivars carrying three or four-gene (locus) combinations was 11.3%. The remaining cultivars (6.5%) were free of above elite gene (locus). Therefore, the frequency of combination of multiple strong-gluten subunits gene (locus) was low in cultivars from Shaanxi Province, which could be promoted through germplasm introduction and traditional breeding aided by molecular marker selection. The multiplex PCR system developed in this study may serve as a rapid and efficient method to select materials pyrimiding multiple genes (loci) associated with strong-gluten in wheat breeding for quality.

Key words: Common wheat cultivars from Shaanxi Province, Molecular marker, Multiplex PCR system

[1]Kasarda D D. Glutenin polymers: the in vitro to in vivo transition. Cereal Foods World, 1999, 44: 566–571
[2]Gupta, R B, Shepherd K W. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin: 1. Variation and genetic control of the subunits in hexaploid wheats. Theor Appl Genet, 1990, 80: 65–74
[3]Radovanovic N, Cloutier S. Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Mol Breed, 2003, 12: 51–59
[4]Gupta R B, Bekes F, Wrigley C W. Prediction of physical dough properties from glutenin subunit composition in bread wheats. Cereal Chem, 1991, 68: 328–333
[5]Liu L, He Z H, Yan J, Zhang Y, Xia X C, Peña R J. Allelic variation at the Glu-1 and Glu-3 loci, presence of the 1B•1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica, 2005, 142: 197–204
[6]D’Ovidio R, Anderson O D. PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality. Theor Appl Genet, 1994, 88: 759–763
[7]Lafiandra D, Tucci G F, Pavoni A, Turchetta T, Margiotta B. PCR analysis of x- and y-type genes present at the complex Glu-A1 locus in durum and bread wheat. Theor Appl Genet, 1997, 94: 235–240
[8]van Campenhout S, Stappen J, Sagi L, Volckaert G. Locus-specific primers for LMW glutenin genes on each of the group 1 chromosomes of hexaploid wheat. Theor Appl Genet, 1995, 91: 313–319
[9]Ragupathy R, Naeem H A, Reimer E, Lukow O M, Sapirstein H D, Cloutier S. Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the over-expressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theor Appl Genet, 2008, 116: 283–296
[10]Wang L H, Li G Y, Peña R J, Xia X C, He Z H. Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.). J Cereal Sci, 2010, 51: 305–312
[11]Wang L H, Zhao X L, He Z H, Ma W, Appels R, Peña R J, Xia X C. Characterization of low molecular weight glutenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). Theor Appl Genet, 2009, 118: 525–539
[12]Ahmad M. Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor Appl Genet, 2000, 101: 892–896
[13]Ma W, Zhang W, Gale K R. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 2003,134: 51–60
[14]Moczulski M, Salmanowicz B P. Multiplex PCR identification of wheat HMW glutenin subunit genes by allele-specific markers. J Appl Genet, 2003, 44: 459-471
[15]Zhang X K, Liu L, He Z H, Sun D J, He X Y, Xu Z H, Zhang P P, Chen F, Xia X C. Development of two multiplex PCR assays targeting improvement of bread-making and noodle qualities in common wheat. Plant Breed, 2008, 127: 109–115
[16]Zhang X-K(张晓科), Xia X-C(夏先春), Wang Z-W(王忠伟), Wan Y-X(万映秀), Zhang P-Z(张平治), He X-Y(何心尧), Yang Y(杨燕), He Z-H(何中虎). Establishment of multiplex-PCR for quality traits in common wheat. Acta Agron Sin (作物学报), 2007, 33(10): 1703–1710 (in Chinese with English abstract)
[17]Wan Y-X(万映秀), Zhang X-K(张晓科), Xia X-C(夏先春), Zhang P-Z(张平治), He Z-H(何中虎). Development of multiplex PCR and identification of major quality genes in cultivars from Yellow and Huai River valley wheat region. Sci Agric Sin (中国农业科学), 2008, 41(3): 643–653 (in Chinese with English abstract)
[18]Zheng H(郑寒), Chen J(陈静), Ren Y(任妍), Yu M-Q(余懋群), Fu T-H(付体华). Establishment and application of multiplex-PCR for wheat glutenin subunits relative to superior end-use quality. Acta Agron Sin (作物学报), 2009, 35(10): 1831–1835 (in Chinese with English abstract)
[19]Sui X X, Wang L H, Xia X C, Wang Z L, He Z H. Development of an allele-specific marker for Glu-B3 alleles in common wheat and establishment of a multiplex PCR assay. Crop & Pasture Sci, 2010, 61: 978–987
[20]Liu L(刘丽). Identification of glutenin composition in common wheat by proteomics technology. PhD Dissertation of Chinese Academy of Agricultural Sciences, 2008 (in Chinese with English abstract)
[21]Sambrook J, Russell D W. Molecular Cloning: A Laboratory Manual, 3rd Edn. New York: Cold Spring Harbor Laboratory Press, 2001
[22]Liu L(刘丽), Zhou Y(周阳), Liu J-J(刘建军), He Z-H(何中虎), Yang J(杨金). Effect of allelic variation at the Glu-1 and Glu-3 loci and presence of 1BL/1RS translocation on pan bread and dry white Chinese noodle quality. Sci Agric Sin (中国农业科学), 2004, 37(9): 1265–1273 (in Chinese with English abstract)
[23]Shewry P R, Halford N G, Tatham A S. High-molecular weight subunits of wheat glutenin. J Cereal Sci, 1992, 15: 105–120
[24]Payne P I, Holt L M, Law C N. Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin: Part 1: allelic variation in subunits amongst varieties of wheat (Triticum aestivum). Theor Appl Genet, 1981, 60: 229–236
[25]Zhang X-Y(张学勇), Pang B-S(庞斌双), You G-X(游光霞), Wang L-F(王兰芬), Jia J-Z(贾继增), Dong Y-C(董玉琛). Allelic variation and genetic diversity at Glu-1 loci in Chinese wheat (Triticum aestivum L.) germplasms. Sci Agric Sin (中国农业科学), 2002, 35(11): 1302–1310 (in Chinese with English abstract)
[26]Chen D-S(陈东升), Liu L(刘丽), Dong J-L(董建力), He Z-H(何中虎), Zhang Y(张艳), Liu J-J(刘建军), Wang D-S(王德森). Effect of HMW and LMW glutenin subunits and presence of 1BL/1RS translocation on quality traits in spring wheat. Acta Agron Sin (作物学报), 2005, 31(4): 414–419 (in Chinese with English abstract)
[27]Shewry P R, Tatham A S. Disulphide bonds in wheat glutein proteins. J Cereal Sci, 1997, 25: 207-227
[28]Zhao H-X(赵会贤), Hu S-W(胡胜武), Ji W-Q(吉万全), Mares D. The effects of allelic variation at glutein subunit loci Glu-1 and Glu-3 on the size distribution of polymeric protein. Sci Agric Sin (中国农业科学), 1998, 31(1): 69–75 (in Chinese with English abstract)
[29]Barro F, Rooke L, Békés F, Gras P, Tatham A S, Fido R, Lazzeri P A., Shewry P R, Barceló P. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol, 1997, 15: 1295–1299
[30]Yang J(杨金), Zhang Y(张艳), He Z-H(何中虎), Yan J(阎俊), Wang D-S(王德森), Liu J-J(刘建军), Wang M-F(王美芳). Association between wheat quality traits and performance of pan bread and dry white Chinese noodle. Acta Agron Sin (作物学报), 2004, 30(8): 739–744 (in Chinese with English abstract)
[31]Liu A-H(刘爱华), He Z-H(何中虎), Wang G-R(王光瑞), Wang D-S(王德森), Zhang Y(张艳), Zhou G-Y(周桂英). Investigation of wheat flour quality for northern style Chinese steamed bread. J Chin Cereal Oils Assoc (中国粮油学报), 2000, 15(2): 10–15 (in Chinese with English abstract)
[32]He Z H, Yang J, Zhang Y, Quail K J, Peña R J. Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica, 2004, 139: 257–267
[1] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[2] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[3] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[4] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[5] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[6] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[7] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[8] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[9] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[10] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[11] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[12] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[13] 牟碧涛,赵卓凡,岳灵,李川,张钧,李章波,申汉,曹墨菊. 两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位[J]. 作物学报, 2019, 45(2): 225-234.
[14] 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681.
[15] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!