欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 761-772.doi: 10.3724/SP.J.1006.2012.00761

• 综述 •    下一篇

植物抗病毒侵染的分子机制

侯静**,刘青青**,徐明良*   

  1. 中国农业大学 / 国家玉米改良中心, 北京 100193
  • 收稿日期:2011-09-01 修回日期:2012-02-22 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 徐明良, E-mail: mxu@cau.edu.cn ** 同等贡献(Contributed equally to the work)
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118401)资助。

Molecular Mechanism of Plant Defense against Virus Attack

HOU Jing**, LIU Qing-Qing**,XU Ming-Liang*   

  1. National Maize Improvement Center of China / China Agricultural University, Beijing 100193, China
  • Received:2011-09-01 Revised:2012-02-22 Published:2012-05-12 Published online:2012-03-05
  • Contact: 徐明良, E-mail: mxu@cau.edu.cn ** 同等贡献(Contributed equally to the work)

摘要: 植物病毒病是一类严重危害农作物生产的重要病害。已报道的植物抗病毒基因主要在抑制病毒增殖和阻止病毒扩散中起作用。病毒的复制涉及自身的编码蛋白及其与寄主蛋白间的互作, 参与病毒复制的寄主蛋白很多, 如真核翻译起始因子eIF4E和eIF4G, 植物的内膜系统等, 相关蛋白的功能丧失或构型改变可阻滞病毒的复制;此外, 植物细胞内的硫氧还蛋白可调节细胞的氧化还原状态, 进而阻断病毒的增殖。病毒在植物体内的扩散包括胞间移动和长距离迁移, 植物抗病蛋白(R蛋白)通过识别病毒的无毒因子(Avr)促发防御反应, 诱导过敏性坏死, 限制病毒在细胞间的扩散, 编码这类抗病蛋白的基因主要为TIR-NBS-LRR和CC-NBS-LRR。病毒的长距离迁移涉及的因素很多, 目前仅发现韧皮部的RTM蛋白可能以多聚蛋白的形式抵制病毒的长距离移动。另外, RNA沉默也是植物抵制病毒侵染的免疫反应机制。本文旨在综述植物的各种抗病毒机制和相关的抗病基因, 并探讨分子标记辅助选择(marker-assisted selection, MAS), 定向诱导基因组局部突变(targeting induced local lesions in genomes, TILLING)和转基因等生物技术在抗病改良中的应用前景。

关键词: 植物, 病毒, 基因, 抗病蛋白, Avr因子, RNA沉默

Abstract: Viral diseases of plants seriously threaten the crop productivity. Many virus resistance genes are reported to play roles in restraining viral replication and preventing virus movement. The viral replication is a complex process which depends on virus-encoded proteins, host factors, and their interactions. Many host factors are actively engaged in viral replication, e.g. eukaryotic translation initiation factor 4E (eIF4E) and 4G (eIF4G), and plant endomembrane systems. The loss-of-function or conformational changes of these host factors may inhibit viral replication. Furthermore, thioredoxin can regulate cellular redox state to restrain viral replication. Virus movement involves cell-to-cell movement and long distance movement. Hypersensitive cell death is trigged through the perception of a pathogen avirulence factor (Avr) by the cognate plant resistance protein (R protein) to limit the viral cell to cell movement. Dominant plant R genes, characterized by TIR-NBS-LRR or CC-NBS-LRR, are generally responsible for such kind of defense response. There are many factors associated with the long distance virus movement, but only polymerized RTM protein in phloem was identified to limit viral long distance movement. In addition, RNA silencing also actively functions as an antiviral defense response. This review is aimed to summarize various mechanisms of plant defense against virus attack, and to analyze possible implementations of MAS, TILLING, and transgenic technologies in the improvement of virus disease resistance in crops.

Key words: Plant, Virus, Gene, Resistance protein, Avirulence factor, RNA silencing

[1]Beijerinck M J. Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves. Verhandelingen der Koninkyke akademie Wettenschapppen te Amsterdam, 1898, 65: 3-21

[2]Laliberté J F, Sanfaçon H. Cellular remodeling during plant virus infection. Annu Rev Phytopathol, 2010, 48: 69-91

[3]Gómez P, Rodríguez-Hernández A M, Moury B, Aranda M A. Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur J Plant Pathol, 2009, 125: 1-22

[4]Stacesmith R, Hamilton R I. Inoculum thresholds of seedborne pathogens-viruses. Phytopathology, 1988, 78: 875-880

[5]Sadasivam S, Thayumanavan B. Molecular Host Plant Resistance to Pests. New York: Marcel Dekker Press, 2003. p 479

[6]Singer A C, Crowley D E, Thompson I P. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol, 2003, 21: 123-130

[7]Buck K W. Replication of tobacco mosaic virus RNA. Philos Trans R Soc Lond B Biol Sci, 1999, 354: 613-627

[8]Noueiry A O, Ahlquist P. Brome Mosaic virus RNA replication: Revealing the role of the host in RNA virus replication. Annu Rev Phytopathol, 2003, 41: 77-98

[9]Robaglia C, Caranta C. Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci, 2006, 11: 40-45

[10]Fraser R S S. The genetics of resistance to plant-viruses. Annu Rev Phytopathol, 1990, 28: 179-200

[11]Leonard S, Plante D, Wittmann S, Daigneault N, Fortin M G, Laliberte J F, Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol, 2000, 74: 7730-7737

[12]Ruffel S, Dussault M H, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J, 2002, 32: 1067-1075

[13]Ruffel S, Gallois J L, Lesage M L, Caranta C. The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genomics, 2005, 274: 346-353

[14]Lellis A D, Kasschau K D, Whitham S A, Carrington J C. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol, 2002, 12: 1046-1051

[15]Nicaise V, German-Retana S, Sanjuan R, Dubrana M P, Mazier M, Maisonneuve B, Candresse T, Caranta C, Legall O. The Eukaryotic translation initiation factor 4E controls lettuce ssceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiol, 2003, 132: 1272-1282

[16]Kanyuka K, Druka A, Caldwell D G, Tymon A, McCallum N, Waugh R, Adams M J. Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Mol Plant Pathol, 2005, 6: 449-458

[17]Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A. The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J, 2005, 42: 912-922

[18]Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomènech P, Pitrat M, Caboche M, Dogimont C, Garcia-Mas J, Aranda M A, Bendahmane A. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J, 2006, 48: 452-462

[19]Truniger V, Nieto C, González-Ibeas D, Aranda M. Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlled in cis by an (a)virulence determinant. Plant J, 2008, 56: 716-727

[20]Albar L, Bangratz-Reyser M, Hébrard E, Ndjiondjop M N, Jones M, Ghesquière A. Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J, 2006, 47: 417-426

[21]Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M. An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci USA, 2007, 104: 13833-13838

[22]Sun L J, Ren H Y, Liu R X, Li B Y, Wu T Q, Sun F, Liu H M, Wang X M, Dong H S. An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol Plant-Microbe Interact, 2010, 23: 1470-1485

[23]Tada Y, Spoel S H, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science, 2008, 321: 952-956

[24]Schaad M C, Jensen P E, Carrington J C. Formation of plant RNA virus replication complexes on membranes: Role of an endoplasmic reticulum-targeted viral protein. EMBO J, 1997, 16: 4049-4059

[25]Magliano D, Marshall J A, Bowden D S, Vardaxis N, Meanger J, Lee J Y. Rubella virus replication complexes are virus-modified lysosomes. Virology, 1998, 240: 57-63

[26]Mackenzie J M, Jones M K, Westaway E G. Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. J Virol, 1999, 73: 9555-9567

[27]Restrepo-Hartwig M, Ahlquist P. Brome mosaic virus RNA replication proteins 1a and 2a colocalize and 1a independently localizes on the yeast endoplasmic reticulum. J Virol, 1999, 73: 10303-10309

[28]Lee W M, Ishikawa M, Ahlquist P. Mutation of Host Δ9 fatty acid desaturase inhibits Brome mosaic virus RNA replication between template recognition and RNA synthesis. J Virol, 2001, 75: 2097-2106

[29]Yamanaka T, Imai T, Satoh R, Kawashima A, Takahashi M, Tomita K, Kubota K, Meshi T, Naito S, Ishikawa M. Complete inhibition of Tobamovirus multiplication by simultaneous mutations in two homologous host genes. J Virol, 2002, 76: 2491-2497

[30]Tsujimoto Y, Numaga T, Ohshima K, Yano M, Ohsawa R, Goto D B, Niato S, Ishikawa M. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J, 2003, 22: 335-343

[31]Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. Protoplasma, 2010, 248: 75-99

[32]Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L, Didier P, Lerich A, Mutterer J, Thomas C L, Heinlein M, Mély Y, Maule A J, Ritzenthaler C. A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog, 2010, 6: e1001119

[33]Lucas W J, Ham B K, Kim J Y. Plasmodesmata - bridging the gap between neighboring plant cells. Trends Cell Biol, 2009, 19: 495-503

[34]Yoshii M, Nishikiori M, Tomita K, Yoshioka N, Kozuka R, Naito S, Ishikawa M. The Arabidopsis Cucumovirus Multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J Virol, 2004, 78: 6102-6111

[35]Gao Z, Johansen E, Eyers S, Thomas C L, Noel Ellis T H, Maule A J. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J, 2004, 40: 376-385

[36]van der Biezen E A, Jones J D G. The NB-ARC domain: A novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol, 1998, 8: R226-R227

[37]Caplan J, Dinesh-Kumar S. Natural Resistance Mechanisms of Pants to Viruses. Netherlands: Springer Press, 2006. pp 73-98

[38]Whitham S, Dineshkumar S P, Choi D, Hehl R, Corr C, Baker B. The product of the Tobacco mosaic virus resistance gene N similarity to toll and the interleukin-1 receptor. Cell, 1994, 78: 1101-1115

[39]Ueda H, Yamaguchi Y, Sano H. Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol Biol, 2006, 61: 31-45

[40]Caplan J L, Mamillapalli P, Burch-Smith T M, Czymmek K, Dinesh-Kumar S P. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell, 2008, 132: 449-462

[41]Vidal S, Cabrera H, Andersson R A, Fredriksson A, Valkonen J P T. Potato gene Y-1 is an N gene homolog that confers cell death upon infection with potato virus Y. Mol Plant-Microbe Interact, 2002, 15: 717-727

[42]Seo Y S, Rojas M R, Lee J Y, Lee S W, Jeon J S, Ronald P, Lucas W J, Gilbertson R L. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc Natl Acad Sci USA, 2006, 103: 11856-11861

[43]Hajimorad M R, Eggenberger A L, Hill J H. Loss and gain of elicitor function of Soybean mosaic virus G7 provoking Rsv1-mediated lethal systemic hypersensitive response maps to P3. J Virol, 2004, 79: 1215-1222

[44]Merits A, Guo D Y, Jarvekulg L, Saarma M. Biochemical and genetic evidence for interactions between potato A potyvirus-encoded proteins P1 and P3 and proteins of the putative replication complex. Virology, 1999, 263: 15-22

[45]Lanfermeijer F C, Dijkhuis J, Sturre M J G, de Haan P, Hille J. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum. Plant Mol Biol, 2003, 52: 1037-1049

[46]Pfitzner A J P, Weber H. Tm-22 resistance in tomato requires recognition of the carboxy terminus of the movement protein of tomato mosaic virus. Mol Plant-Microbe Interact, 1998, 11: 498-503

[47]Brommonschenkel S H, Frary A, Frary A, Tanksley S D. The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant-Microbe Interact, 2000, 13: 1130-1138

[48]Lopez C, Aramburu J, Galipienso L, Soler S, Nuez F, Rubio L. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J General Virol, 2011, 92: 210-215

[49]Cooley M B, Pathirana S, Wu H J, Kachroo P, Klessig D F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell, 2000, 12: 663-676

[50]Ren T, Qu F, Morris T J. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell, 2000, 12: 1917-1925

[51]Takahashi H, Miller J, Nozaki Y, Sukamto, Takeda M, Shah J, Hase S, Ikegami M, Ehara Y, Dinesh-Kumar S P. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to Cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J, 2002, 32: 655-667

[52]Kang B C, Yeam I, Jahn M M. Genetics of plant virus resistance. Annu Rev Phytopathol, 2005, 43: 581-621

[53]Bendahmane A, Kanyuka K, Baulcombe D C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell, 1999, 11: 781-791

[54]Mestre P, Brigneti G, Baulcombe D C. An Ry-mediated resistance response in potato requires the intact active site of the NIa proteinase from potato virus Y. Plant J, 2000, 23: 653-661

[55]Mestre P, Brigneti G, Durrant M C, Baulcombe D C. Potato virus Y NIa protease activity is not sufficient for elicitation of Ry-mediated disease resistance in potato. Plant J, 2003, 36: 755-761

[56]Rairdan G J, Collier S M, Sacco M A, Baldwin T T, Boettrich T, Moffett P. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell, 2008, 20: 739-751

[57]Ueki S, Citovsky V. The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nat Cell Biol, 2002, 4: 478-485

[58]Chisholm S T, Parra M A, Anderberg R J, Carrington J C. Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol, 2001, 127: 1667-1675

[59]Cosson P, Sofer L, Le Q H, Leger V, Schurdi-Levraud V, Whitham S A, Yamamoto M L, Gopalan S, Le Gall O, Candresse T, Carrington J C, Revers F. RTM3, Which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology domain-containing protein. Plant Physiol, 2010, 154: 222-232

[60]Revers F, Guiraud T, Houvenaghel M C, Mauduit T, Le Gall O, Candresse T. Multiple resistance phenotypes to Lettuce mosaic virus among Arabidopsis thaliana accessions. Mol Plant-Microbe Interact, 2003, 16: 608-616

[61]Decroocq V, Sicard O, Alamillo J M, Lansac M, Eyquard J P, Garcia J A, Candresse T, Le Gall O, Revers F. Multiple resistance traits control Plum pox virus infection in Arabidopsis thaliana. Mol Plant-Microbe Interact, 2006, 19: 541-549

[62]Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes & Development, 2006, 20: 759-771

[63]Soosaar J L M, Burch-Smith T M, Dinesh-Kumar S P. Mechanisms of plant resistance to viruses. Nat Rev Microbiol, 2005, 3: 789-798

[64]Ding S W, Voinnet O. Antiviral immunity directed by small RNAs. Cell, 2007, 130: 413-426

[65]Xie Z X, Fan B F, Chen C H, Chen Z X. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc Natl Acad Sci USA, 2001, 98: 6516-6521

[66]Ding S W. RNA-based antiviral immunity. Nat Rev Immunol, 2010, 10: 632-644

[67]Henderson I R, Zhang X, Lu C, Johnson L, Meyers B C, Green P J, Jacobsen S E. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet, 2006, 38: 721-725

[68]Margis R, Fusaro A F, Smith N A, Curtin S J, Watson J M, Finnegan E J, Waterhouse P M. The evolution and diversification of Dicers in plants. FEBS Lett, 2006, 580: 2442-2450

[69]Blevins T, Rajeswaran R, Shivaprasad P V, Beknazariants D, Si-Ammour A, Park H S, Vazquez F, Robertson D, Meins F, Hohn T, Pooggin M M. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res, 2006, 34: 6233-6246

[70]Deleris A, Gallego-Bartolome, Bao J S, Kasschau K D, Carrington J C, Voinnet O. Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science, 2006, 313: 68-71

[71]Garcia-Ruiz H, Takeda A, Chapman E J, Sullivan C M, Fahlgren N, Brempelis K J, Carrington J C. Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip mosaic virus infection. Plant Cell Online, 2010, 22: 481-496

[72]Baumberger N, Baulcombe D C. Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA, 2005, 102: 11928-11933

[73]Zilberman D, Cao X F, Johansen L K, Xie Z X, Carrington J C, Jacobsen S E. Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol, 2004, 14: 1214-1220

[74]Mi S J, Cai T, Hu Y G, Chen Y M, Hodges E, Ni F R, Wu L, Li S, Zhou H Y, Long C Z, Chen S, Hannon G J, Qi Y J. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell, 2008, 133: 116-127

[75]Merai Z, Kerenyi Z, Kertesz S, Magna M, Lakatos L, Silhavy D. Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol, 2006, 80: 5747-5756

[76]Voinnet O, Pinto Y M, Baulcombe D C. Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA, 1999, 96: 14147-14152

[77]Chapman E J, Prokhnevsky A I, Gopinath K, Dolja V V, Carrington J C. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes & Development, 2004, 18: 1179-1186

[78]Zhang X R, Yuan Y R, Pei Y, Lin S S, Tuschl T, Patel D J, Chua N H. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes & Development, 2006, 20: 3255-3268

[79]Bortolamiol D, Pazhouhandeh M, Marrocco K, Genschik P, Ziegler-Graff V. The polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol, 2007, 17: 1615-1621

[80]Csorba T, Lózsa R, Hutvágner G, Burgyán J. Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. Plant J, 2010, 62: 463-472

[81]McCallum C M, Comai L, Greene E A, Henikoff S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol, 2000, 123: 439-442

[82]Piron F, Nicolaï M, Minoïa S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A. An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS ONE, 2010, 5: e11313

[83]Abel P P, Nelson R S, De B, Hoffmann N, Rogers S G, Fraley R T, Beachy R N. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 1986, 232: 738-743

[84]Niu Q W, Lin S S, Reyes J L, Chen K C, Wu H W, Yeh S D, Chua N H. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol, 2006, 24: 1420-1428

[85]Shimizu T, Nakazono-Nagaoka E, Uehara-Ichiki T, Sasaya T, Omura T. Targeting specific genes for RNA interference is crucial to the development of strong resistance to Rice stripe virus. Plant Biotechnol J, 2011, 9: 503-512

[86]Shimizu T, Nakazono-Nagaoka E, Akita F, Uehara-Ichiki T, Omura T, Sasaya T. Immunity to Rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. Virus Res, 2011, 160: 400-403

[87]Shimizu T, Yoshii M, Wei T, Hirochika H, Omura T. Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnol J, 2009, 7: 24-32
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[5] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[6] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[7] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[8] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[9] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[10] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[11] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[12] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[13] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[14] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[15] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!