欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1253-1263.doi: 10.3724/SP.J.1006.2012.01253

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

桑树花青素合酶基因的克隆与信息学分析

张琼予,李军,赵爱春,王茜龄,金筱耘,李镇刚,余茂德*   

  1. 西南大学家蚕基因组生物学国家重点实验室, 重庆北碚 400715
  • 收稿日期:2011-06-13 修回日期:2012-04-28 出版日期:2012-07-12 网络出版日期:2012-05-11
  • 通讯作者: 余茂德, E-mail: yumd@163.com, Tel: 023-68250191
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-22-ZJ0103), 重庆市蚕桑重大科技专项(CSTC, 2009AA1024)和国家自然青年科学基金(31101769)资助。

Molecular Cloning and Information Analysis of ANS Genes Encoding Anthocyanin Synthases from Mulberry (Morus alba)

ZHANG Qiong-Yu,LI Jun,ZHAO Ai-Chun,WANG Xi-Ling,JIN Xiao-Yun,Li Zhen-Gang,YU Mao-De*   

  1. State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei 400715, China
  • Received:2011-06-13 Revised:2012-04-28 Published:2012-07-12 Published online:2012-05-11
  • Contact: 余茂德, E-mail: yumd@163.com, Tel: 023-68250191

摘要: 花青素合酶ANS是花青素合成过程中的一个关键限速酶。本文利用同源克隆、RT-PCR从桑椹中克隆出花青素合酶(MaANS)基因, 并进行生物信息学分析和组织特异性表达分析。通过染色体步移法获得的MaANS基因的5′端和3′端, 获得基因全长1 535 bp, 由2个外显子和1个内含子组成,包含完整CDS区域为1 077 bp, 编码358个氨基酸, 与来源于草莓、甘薯、苹果、沙梨的ANS基因同源性均达到80%以上。MaANS编码的蛋白质属于2-酮戊二酸双加氧酶家族。MaANS在进化树中的位置与草莓最近,与苹果、沙梨次之。组织表达分析表明, MaANS基因在幼叶和成熟果实中高水平表达,表明该基因的表达具有组织特异性,为研究桑树果色的形成原因和表达调控奠定了基础。

关键词: 桑树, 花青素合酶(ANS), 克隆, 信息分析, 组织表达

Abstract: Anthocyanidin synthase (ANS, leucoanthocyanidin oxygenase) is one of the critical enzymes in the biosynthesis of the anthocyanin. Anthocyanidin synthase gene fragment (designated as MaANS) was isolated from mulberry fruit (Moru alba) by RT-PCR based on homology cloning and genome walking technology. MaANS with the 5′ and 3′ was cloned by genome-walking. The full-length genomic sequence of MaANS is 1 535 bp, which consists of two exons and one intron. The coding region length was
1 077 bp, and their deduced protein consisted of 358 amino acid residues. Multiple alignments revealed that the nucleic acid of MaANS shared above 80% identity with that of Fragaria × ananassa, Ipomoea batatas, Malus domestica, and Pyrus pyrifolia. Structural analysis showed that the MaANS protein might belong to the 2 OG and Fe(II)-dependent oxygenase family. Phylogenetic tree analysis revealed that MaANS was the most close with Fragaria × ananassa, then Malus domestica and Pyrus pyrifolia. Reverse transcription-PCR (RT-PCR) analyses of MaANS transcripts showed that it was abundantly expressed in the young leaves and ripened fruit. All research made an essential foundation for pathway and regulation of gene expression in anthocyanin biosynthesis in mulberry fruit.

Key words: Mulberry, Anthocyanin synthase, Cloning, Information analysis, Tissues expression

[1]Schaefer H M, Wilkinson D M, Red leaves, insects and coevolution: a red herring. Trends Ecol Evol, 2004, 19: 616-618

[2]Tsuda T, Horio F, Uchida K, Aoki H, Osawa T. Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr, 2003, 133: 2125-2130

[3]Wang S Y, Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agric Food Chem, 2000, 48: 5677-5684

[4]Matsumoto H, Inaba H, Kishi M, Tominaga S, Hirayama M, Tsuda T. Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J Agric Food Chem, 2001, 49: 1546-1551

[5]Nakaishi H, Matsumoto H, Tominaga S, Hirayama M. Effects of black current anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Altern Med Rev, 2000, 5: 553-562

[6]Muth E R, Laurent J M, Jasper P. The effect of bilberry nutritional supplementation on night visual acuity and contrast sensitivity. Altern Med Rev, 2000, 5: 164-173

[7]Mazza G, Kay C D, Cottrell T, Holub B J. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem, 2002, 50: 7731-7737

[8]Wang X-L(王茜龄). Studies on Induction of Polyploid and Breeding of Good New Variety in Mulberry. PhD Dissertation of Southwest University, 2009 (in Chinese with English abstract)

[9]Turnbull J J, Sobey W J, Aplin R T, Hassan A, Firmin J L, Schofield C J, Prescott A G. Are anthocyanidins the immediate products of anthocyanidin synthase. Chem Commun, 2000, 24: 2473-2474

[10]Menssen A, Höhmann S, Martin W, Schnable P S, Peterson P A, Saedler H, Gierl A. The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J, 1990, 9: 3051-3057

[11]Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J, 1991, 1: 37-49

[12]Weiss D, van der Luit A H, Kroon J T, Mol J N, Kooter J M. The petunia homologue of the Antirrhinum majus candi and Zea mays A2 flavonoid genes; homology to flavanone 3-hydroxylase and ethylene-forming enzyme. Plant Mol Biol, 1993, 22: 893-897

[13]Gong Z, Yamazaki M, Sugiyama M, Tanaka Y, Saito K. Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Mol Biol, 1997, 35: 915-927

[14]Szankowski I, Flachowsky H, Li H, Halbwirth H, Treutter D, Regos I, Hanke MV, Stich K, Fischer T C. Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta, 2009, 229: 681-692

[15]Xu F, Cheng H, Cai R, Li L L, Chang J, Zhu J, Zhang F X, Chen L J, Wang Y, Cheng S H, Cheng S Y. Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses. Mol Cells, 2008, 26: 536-547

[16]Jaakola L, Määttä K, Pirttilä Maria A, Törrönen R, Kärenlampi S and Hohtola A. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol, 2002, 130: 729-739

[17]Mano H, Ogasawara F, Sato K, Higo H, Minobe Y. Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol, 2007, 143: 1252-1268

[18]Xiao Y H, Zhang Z S, Yin M H, Luo M, Li X B, Hou L, Pei Y. Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochem Biophys Res Commun, 2007, 358: 73-78

[19]Park J S, Choung M G, Kim J B, Hahn B S, Kim J B, Bae S C, Roh K H, Kim Y H, Cheon C I, Sung M K, Cho K J. Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Rep, 2007, 26: 507-516

[20]Kim S, Binzel M L, Yoo K S, Park S, Pike L M. Pink (P), a new locus responsible for a pink trait in onions (Allium cepa) resulting from natural mutations of anthocyanidin synthase. Mol Genet Genomics, 2004, 272: 18-27

[21]Wilmouth R C, Turnbull J J, Welford R W, Clifton I J, Prescott A G, Schofield C J. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure, 2002, 10: 93-103

[22]Jiang Z, Wang H, Ma Y, Wei D. Characterization of two novel lipase genes isolated directly from environmental sample. Appl Microbiol Biotechnol, 2006, 70: 327-332

[23]Sambrook J, Russell D W, eds. Huang P-T(黄培堂) trans. Molecular Cloning: a Laboratory Manual (分子克隆实验指南). Beijing: Science Press, 2003. pp 28-30

[24]Aljanabi S M , Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucl Acids Res, 1997, 25: 4692-4693

[25]Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 1995, 11: 681-684

[26]Benkert P, Tosatto S C, Schomburg D. QMEAN: a comprehensive scoring function for model quality assessment. Proteins, 2008, 71: 261-77

[27]Benkert P, Künzli M, Schwede T. QMEAN server for protein model quality estimation. Nucl Acids Res, 2009, 37: W510-W 514

[28]Li J(李军), Zhao A-C(赵爱春), Wang X-L(王茜龄), Zhang Q-Y(张琼予), Li Q-Y(黎其友), Jin X-Y(金筱耘), Li Z-G(李镇刚), Yu M-D(余茂德). Molecular cloning and tissues expression analysis of three Actin genes from mulberry (Morus alba). Acta Agron Sin (作物学报), 2011, 37(4): 641-649 (in Chinese with English abstract)

[29]Almeida J R, D’Amico E, Preuss A, Carbone F, de Vos C H, Deiml B, Mourgues F, Perrotta G, Fischer T C, Bovy A G, Martens S, Rosati C. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria × ananassa). Arch Biochem Biophys, 2007, 465: 61-71

[30]Rausher M D, Lu Y, Meyer K. Variation in constraint versus positive selection as an explanation for evolutionary rate variation among anthocyanin genes. J Mol Evol, 2008, 67: 137-144

[31]Lukacin R, Britsch L. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase. Eur J Biochem, 1997, 249: 748-757

[32]Rosati C, Cadic A, Duron M, Ingouff M, Simoneau P. Molecular characterization of the anthocyanidin synthase gene in Forsythia × intermedia reveals organ-specific expression during flower development. Plant Sci, 1999, 149: 73-77

[33]Matsuda J, Okabe S, Hashimoto T, Yamada Y. Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem, 1991, 266: 9460-9464

[34]Shimada S, Inoue Y T, Sakuta M. Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species. Plant J, 2005, 44: 950-959

[35]Chalker-Scott L. Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol, 1999, 70: 1-9

[36]Jose A M, Schäfer E. Distorted phytochrome action spectra in green plants. Planta, 1978, 138: 25

[37]Li Y(李跃), Liu Y-J(刘延吉). Research on metabolism mechanism of fruit anthocyanin and control technique. J Anhui Agric Sci (安徽农业科学), 2007, 35(16): 4755-4756 (in Chinese with English abstract)

[38]Zhao Z-F(赵宗方), Xie J-B(谢嘉宝), Wu G-F(吴桂法), Wang C-L(王成良). Correlation analysis on development of anthocyanidin in pericarp of fuji apple. J Fruit Sci (果树科学), 1992, 9(3): 134-237 (in Chinese with English abstract)

[39]Ramirez-Tortosa C, Andersen Ø M, Gardner P T, Morrice P C, Wood S G, Duthie S J, Collins A R, Duthie G G. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic Biol Med, 2001, 31: 1033-1037

[40]Cheng L Q, Xu Y J, Grotewold E, Jin Z P, Wu F Y, Fu C X, Zhao D X. Characterization of anthocyanidin synthase (ANS) gene and anthocyanidin in rare medicinal plant-Saussurea medusa. Plant Cell Tissue Organ Culture, 2007, 89: 63-73

[41]Pang Y, Peel G J, Wright E, Wang Z, Dixon R A. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol, 2007, 145: 601-615

[42]Reddy A M, Reddy V S, Scheffler B E, Wienand U, Reddy A R. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential. Metab Eng, 2007, 9: 95-111

[43]Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classi?cation for the orders and families of ?owering plants: APG III. Bot J Linnean Soc, 161: 105-121

[44]Brouillard R, Dangles O. Flavonoids and Flower Colour in the Flavonoids. In: Harborne J B ed. The Flavonoids: Advances in Research Since 1986. London: Chapman & Hall Ltd., 1993. pp 565-588

[45]Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071-1083
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[5] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[6] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[7] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[8] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[9] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[10] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[11] 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183.
[12] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[13] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[14] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[15] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!