欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1318-1327.doi: 10.3724/SP.J.1006.2012.01318

• 耕作栽培·生理生化 • 上一篇    下一篇

内蒙古平原灌区高产春玉米(15 t hm-2以上)产量性能及增产途径

王志刚1,高聚林1,*,张宝林2,罗瑞林2,杨恒山3,孙继颖1,于晓芳1,苏治军1,胡树平1   

  1. 1 内蒙古农业大学农学院,内蒙古呼和浩特 010019; 2内蒙古师范大学化学与环境科学学院,内蒙古呼和浩特 010020;3内蒙古民族大学农学院, 内蒙古通辽028042
  • 收稿日期:2011-11-14 修回日期:2012-04-20 出版日期:2012-07-12 网络出版日期:2012-05-15
  • 通讯作者: 高聚林, E-mail: gaojulin@yahoo.com.cn
  • 基金资助:

    本研究由国家“十二五”科技支撑计划项目(2011BAD16B14), 内蒙古自然科学基金项目(2011BS0303), 内蒙古农业大学博士科研启动基金(BJ09-15)和内蒙古农业大学玉米超高产科技创新团队计划项目(NDTD2010-9)资助。

Productivity Performance of High-Yield Spring Maize and Approaches to Increase Grain Yield (above 15 t ha-1) in Irrigated Plain of Inner Mongolia

WANG Zhi-Gang1,GAO Ju-Lin1,*,ZHANG Bao-Lin2,LUO Rui-Lin2,YANG Heng-Shan3, SUN Ji-Ying1, YU Xiao-Fang1, SU Zhi-Jun1,HU Shu-Ping1   

  1. 1 College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, China; 2 College of Chemistry and Environmental Sciences, Inner Mongolia Normal University, Hohhot 010020, China; 3 College of Agronomy, Inner Mongolia University for the Nationality, Tongliao 028042, China
  • Received:2011-11-14 Revised:2012-04-20 Published:2012-07-12 Published online:2012-05-15
  • Contact: 高聚林, E-mail: gaojulin@yahoo.com.cn

摘要: 针对内蒙古平原灌区春玉米高产(15 t hm-2以上)群体产量进一步提高难度大,产量挖潜途径不明确的问题,采用产量构成因素分析与产量性能参数分析相互验证的方法,在4年52点次高产(15 t hm-2以上)群体产量构成因素分析的基础上,设计不同品种密度试验,研究增密对不同品种群体产量性能的影响,明确不同类型玉米品种的增产途径和栽培调控的主攻方向。结果表明,穗数和穗粒数是决定高产(15 t hm-2以上)群体产量的主要因素。实现15 t hm-2以上群体的产量结构为:穗数(7.08~9.60)×104穗,穗粒数477~654粒,千粒重324.7~388.7 g,穗粒重168.9~234.0 g。其合理群体结构衡量指标是LAImax在6.5以上,平均LAI在5左右,收获期LAI在3.5以上。高秆大穗型品种理想的产量结构是:67 500~75 000穗 hm-2,每穗610~640粒,千粒重380 g左右,单穗粒重220~240 g,产量大于15 t hm-2;株高适中的中小穗型品种,理想产量结构是: 75 000~97 500穗 hm-2,每穗520~600粒,千粒重340~355 g,单穗粒重180~220 g,产量在16.5 t hm-2以上。密度增加促进平均作物生长率(MCGR)和单位面积总籽粒数(TGN)的增加进而提高产量,但增密后平均净同化率(MNAR)降低导致穗粒数显著降低并限制了TGN的提高潜力。通过增密为主的结构性挖潜,使得群体功能的增益大于个体生产性能的降低,实现高产(15 t hm-2以上),属于“得失性补偿增产”;在优化群体结构的基础上,提高个体生产能力,突破个体库容降低的限制,进行功能性挖潜,实现群体结构和个体功能协同增益的“差异性补偿增产”,是产量进一步提高的重要途径。

关键词: 春玉米, 产量性能, 定量分析, 高产群体

Abstract: It is difficult to increase grain yield (above 15 tha-1) in irrigated plain of Inner Mongolia because of unclearness in exploring the productivity potential of high-yield spring maize colony. To solve this problem, we analyzed the yield components the yield performance parameters, and the effects of plant density on yield performance of different hybrids in split plot designs for 52 high yield maize colonies in four years,. The result showed that ear number and grain number per ear were the main factors affecting the yield of maize colony (above 15 tha-1). The yield components of high yield colonies (above 15 t ha-1) were as follows: 7.08×104–9.60×104 ears per hectare, 477–654 grains per ear, 324.7–388.7 g per 1000-grains and 168.9–234.0 g per ear. The rational indexes for high yield maize colony (above 15 t ha-1) included the maximum LAI (leaf area index) of above 6.5, the MLAI (mean of leaf area index) of about 5.0, and the LAI at harvest stage was above 3.5. However, different hybrid cultivars demonstrated different rational yield components: cultivars with high stalk and large ear (yield over 15 tha-1) should have 67 500–75 000 ears per hectare, 610–640 grains per ear, about 380 gram per 1000-grains, and 220–240 gram per ear; cultivars with medium or little ear on medium stalk (yield above 16.5 tha-1) should have 75 000–97 500 ears per hectare, 520–600 grains per ear, 340–355 gram per 1000-grains, and 180–220 gram per ear. Enhancing plant density increased yield by high MCGR (mean of crop growth rate) and TGN (total grain number), but the decline in net assimilation capacity per plant resulted in remarkable reduction of GN (grain number) and thus restricted TGN potential. Adjusting population structure by increasing plant density brought about high yield above 15 tha-1, which results from the compensation of population yield gain for individual productivity loss. Individual productivity in structure-optimized colony should be improved to break the limit of individual sink, and synchronous improvement in colony structure and individual function is the important approach to further raise yield of spring maize.

Key words: Spring maize, Yield performance, Quantitative analysis, High yield

[1]Huang Z-X(黄振喜), Wang Y-J(王永军), Wang K-J(王空军), Li D-H(李登海), Zhao M(赵明), Liu J-G(柳京国), Dong S-T(董树亭), Wang H-J(王洪军), Wang J-H(王军海), Yang J-S(杨今胜). Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15 000 kg ha-1. Sci Agric Sin (中国农业科学), 2007, 40(9): 1898–1906 (in Chinese with English abstract)

[2]Chen G-P(陈国平), Gao J-L(高聚林),Zhao M(赵明), Dong S-T(董树亭), Li S-K(李少昆), Yang Q-F(杨祁峰), Liu Y-H(刘永红), Wang L-C(王立春), Xue J-Q(薛吉全), Liu J-G(柳京国), Li C-H(李潮海), Wang Y-H(王永宏), Wang Y-D(王友德), Song H-X(宋慧欣), Zhao J-R(赵久然). Distribution, yield structure, and key cultural techniques of maize super high yield plots in recent years. Acta Agron Sin (作物学报), 2012, 38(1): 80–85 (in Chinese with English abstract)

[3]Li S-K(李少昆), Wang C-T(王崇桃). Analysis on change of production and factors promoting yield increase of corn in China. J Maize Sci (玉米科学), 2008, 16(4): 26–30 (in Chinese with English abstract)

[4]Zhao M(赵明), Li J-G(李建国), Zhang B(张宾), Dong Z-Q(董志强), Wang M-Y(王美云). The compensatory mechanism in exploring crop production potential. Acta Agron Sin(作物学报), 2006, 32(10): 1566–1573 (in Chinese with English abstract)

[5]Zhao M(赵明), Wang S-A(王树安), Li S-K(李少昆). Model of three combination structure of crop yield analysis. Acta Agric Univ Pekinensis(北京农业大学学报), 1995, 21(4): 359–364 (in Chinese with English abstract)

[6]Zhao M(赵明), Fu J-D(付金东). Quantitative analysis and technical approaches to high-yield performance in maize. J Maize Sci (玉米科学), 2008, 16(4): 8-12(in Chinese with English abstract)

[7]Lafitte H R, Travis R S. Photosynthesis and assimilate partitioning in closely related lines of rice exhibiting different sink: source relationships. Crop Sci, 1984, 24: 447–452

[8]Duvick D N. What is yield? In: Edmeades G O, Banziger B, Mickelson H R, Pe-na-Valdivia C B, eds. Proceedings on Developing Drought and Low N-Tolerant Maize. El Batan, Mexico: CIMMYT, March 25–29, 1997. pp 332–335

[9]Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Res, 2002, 75: 161–169

[10]Murchie E H, Yang J, Hubbart S, Horton P, Peng S. Are there associations between grain-filling rate and photosynthesis in the flag leaves of field-grown rice? Exp Bot, 2002, 53: 2217–2224

[11]Lü L-H(吕丽华), Zhao M(赵明), Zhao J-R(赵久然), Tao H-B(陶洪斌), Wang P(王璞). Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Sci Agric Sin (中国农业科学), 2008, 41(9): 2624–2632 (in Chinese with English abstract)

[12]Zhang B(张宾), Zhao M(赵明), Dong Z-Q(董志强), Chen C-Y(陈传永), Sun R(孙锐). “Three Combination Structure” quantitative expression and high yield analysis in Crops. Acta Agron Sin (作物学报), 2007, 33(10): 1674–1681 (in Chinese with English abstract)

[13]Zhang B(张宾), Zhao M(赵明), Dong Z-Q(董志强), Li J-G(李建国), Chen C-Y(陈传永), Sun R(孙锐). Establishment and test of LAI dynamic simulation model for high yield population. Acta Agron Sin (作物学报), 2007, 33(4): 612–619 (in Chinese with English abstract)

[14]Zhang F-L(张风路), Wang Z-M(王志敏), Zhao M(赵明), Wang S-A(王树安), Zhao J-R(赵久然), Guo J-L(郭景伦). Studies on the regulating model of maize grain abortion. J Maize Sci (玉米科学), 1998, 6(2): 49–51(in Chinese with English abstract)

[15]Borras L, Maddonni G A, Otegui M E. Leaf senescence in maize hybrids: plant population, row spacing and grain set effects. Field Crops Res, 2003, 82: 13–26

[16]Zhao J-R(赵久然), Wang R-H(王荣焕). Further discussion on the breeding and cultivation techniques for high density tolerant maize cultivars. J Maize Sci (玉米科学), 2008, 16(4): 5–7 (in Chinese with English abstract)

[17]Chen C-Y(陈传永), Hou Y-H(侯玉虹), Sun R(孙锐), Zhu P(朱平), Dong Z-Q(董志强), Zhao M(赵明). Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agron Sin (作物学报), 2010, 36(7): 1153–1160 (in Chinese with English abstract)

[18]Li S-K(李少昆), Wang C-T(王崇桃). Potential and Ways to High Yield in Maize (玉米高产潜力•途径). Beijing: Science Press, 2010. pp 267–268 (in Chinese)

[19]Zhao B-X(赵保献), Liang X-W(梁晓伟), Lei X-B(雷晓兵), Chen R-L(陈润玲), Li L(李林), Wei Y-Q(卫勇强), Zhao H-L(赵合林). Consideration on the breeding for high density tolerant maize cultivars. Chin Agric Sci Bull (中国农学通报), 2009, 25(14): 108–112 (in Chinese with English abstract)

[20]Lü L-H(吕丽华), Tao H-B(陶洪斌), Xia L-K(夏来坤), Zhang Y-J(张雅杰), Zhao M(赵明), Zhao J-R(赵久然), Wang P(王璞). Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agron Sin (作物学报), 2008, 34(3): 447–455 (in Chinese with English abstract)

[21]Song B(宋碧), Liu D-F(刘德凤), Peng Y-S(彭玉淑), Zhou Q-J(周启江). Effects of plant density on yield and colony quality of different plant types of corn. J Anhui Agric Sci (安徽农业科学), 2006, 34(10): 2082–2084 (in Chinese with English abstract)

[22]Ward D A, Woolhouse H W. Comparative effect of light during growth on the photosynthetic properties of NADP-ME type C4 grasses from open and shaded habitats: I. Gas exchange, leaf anatomy and ultrastructure. Plant Cell Environ, 1986, 9: 261–270

[23]Xun Q-Z(徐庆章), Wang Z-X(王忠孝), Wang Q-C(王庆成), Niu Y-Z(牛玉贞), Zhang J(张军), Du C-G(杜成贵). Theory and practice of high yield cultivation of corn in source and sink promoting, ear increasing and keeping green. J Maize Sci (玉米科学), 1994, 7(2): 27–29 (in Chinese with English abstract)
[1] 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331.
[2] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[3] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应[J]. 作物学报, 2021, 47(3): 507-519.
[4] 刘朋召,师祖姣,宁芳,王瑞,王小利,李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断[J]. 作物学报, 2020, 46(8): 1225-1237.
[5] 李瑞杰,唐会会,王庆燕,许艳丽,王琦,卢霖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应[J]. 作物学报, 2020, 46(7): 1063-1075.
[6] 张玉芹,杨恒山,李从锋,赵明,罗方,张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响[J]. 作物学报, 2020, 46(6): 902-913.
[7] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[8] 常建忠,董春林,张正,乔麟轶,杨睿,蒋丹,张彦琴,杨丽莉,吴佳洁,景蕊莲. 小麦抗逆相关基因TaSAP1的5′非翻译区内含子功能分析[J]. 作物学报, 2019, 45(9): 1311-1318.
[9] 宁芳,张元红,温鹏飞,王瑞,王倩,董朝阳,贾广灿,李军. 不同降水状况下旱地玉米生长与产量对施氮量的响应[J]. 作物学报, 2019, 45(5): 777-791.
[10] 唐会会,许艳丽,王庆燕,马正波,李光彦,董会,董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制[J]. 作物学报, 2019, 45(3): 431-442.
[11] 樊海潮,顾万荣,杨德光,尉菊萍,朴琳,张倩,张立国,杨秀红,魏湜. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响[J]. 作物学报, 2018, 44(6): 909-919.
[12] 秦丽霞, 李静, 张换样, 李盛, 竹梦婕, 焦改丽, 吴慎杰. 棉花半乳糖基转移酶基因GhGalT1启动子的克隆及表达分析[J]. 作物学报, 2018, 44(02): 218-226.
[13] 白伟,张立祯,逄焕成,孙占祥,牛世伟,蔡倩,安景文. 秸秆还田配施氮肥对东北春玉米光合性能和产量的影响[J]. 作物学报, 2017, 43(12): 1845-1855.
[14] 韦还和,孟天瑶,李超,张洪程,戴其根,马荣荣,王晓燕,杨筠文. 水稻甬优12产量13.5 t hm-2以上超高产群体的氮素积累、分配与利用特征[J]. 作物学报, 2016, 42(09): 1363-1373.
[15] 扆珩,李昂,刘惠民,景蕊莲. 小麦蛋白磷酸酶2A 基因TaPP2AbB″-α 启动子的克隆及表达分析[J]. 作物学报, 2016, 42(09): 1282-1290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!