作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1328-1333.doi: 10.3724/SP.J.1006.2012.01328
汤青林**,许俊强**,宋明*,王志敏
TANG Qing-Lin**,XU Jun-Qiang**,SONG Ming*,WANG Zhi-Min
摘要: 芥菜花分生组织决定因子AP1与开花路径核心调节子FLC可能存在直接的相互作用,从而调节开花时间。为进一步检测该相互作用,从芥菜“QJ”材料中同源克隆了790 bp的AP1 cDNA序列,该基因编码256个氨基酸。生物信息学分析表明, AP1属MIKC型蛋白,其MADS域含有2个a螺旋和2个b折叠,第1个a螺旋内含有1个不保守氨基酸位点; 而K域含有3个a螺旋,第1、2个a螺旋内各有1个不保守位点,第3个a螺旋内具有4个不保守位点。同时构建了原核表达质粒pET43.1a-AP1,转化宿主菌大肠杆菌BL21,以IPTG诱导该融合蛋白体外表达。利用pET43.1a-AP1融合蛋白序列中6×His 标签与Ni+结合的特点,结合SDS-PAGE分析,证实了体外表达蛋白AP1能与FLC相互作用并形成复合体,该结果为深入研究AP1与FLC互作机制及花分生组织的分子调控奠定了基础。
[1]Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116–1120[2]Gustafson-Brown C, Savidge B, Yanofsky M F. Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell, 1994, 76: 131–143[3]Reyes B, Ana B, Antonio S M, Francisco M. Floral initiation and inflorescence architecture: a comparative view. Ann Bot, 2007, 100: 659–676[4]Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 2004, 303: 1003–1006[5]Corbesier L, Vincent C, Jang S, Fornara F, Fan Q Z, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupand G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316: 1030–1033[6]Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309: 1052–1056[7]Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005, 309: 1056–1059[8]Parcy F, Bomblies K, Weigel D. Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development, 2002, 129: 2519–2527[9]Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature, 1995, 377: 495–500[10]Liljegren S J, Gustafson B C, Pinyopich A, Ditta G S, Yanofsky M F. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell, 1999, 11: 1007–1018[11]Lü J-H(吕晋慧), Wu Y-L(吴月亮), Sun L(孙磊), Zhang Q-X(张启翔). Genetic transformation of Chrysanthemum morifolium cv.‘Yu Ren Mian’with AP1 gene mediated by Agrobacterium tumefaciens. Sci Silav Sin (林业科学), 2007, 43(9): 128–132 (in Chinese with English abstract)[12]Folter S D, Immink R G H, Kieffer M, Parenicová L, Henz S R, Weigel D, Busscher M, Maarten Kooiker M, Lucia Colombo L, Martin M, Kater M M, Brendan Davies B, Angenent G C. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell, 2005, 17: 1424–1433[13]Li Z M, Zhang J Z, Li M, Deng X X, Hu C G, Yao J L. PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Mol Biol, 2010, 74: 129–142[14]Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001, 409, 525–529[15]Sridhar V V, Surendrarao A, Liu Z C. APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development, 2006, 133, 3159–3166[16]Li D, Liu C, Shen L S, Wu Y, Chen H Y, Robertson M, Helliwell C A, Ito T, Meyerowitz E, Yu H. A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell, 2008, 15: 110–120[17]Lee J H, Park S H, Lee J S, Ahn J H. A conserved role of SHORT VEGETATIVE PHASE (SVP) in controlling flowering time of Brassica plants. Biochimica et Biophysica Acta, 2007, 1769: 455–461[18]Mathieu J, Warthmann N, Kuttner F, Schmid M. Export of FT protein form phloem companion cells is sufficient for floral induction in Arabidosis. Curr Biol, 2007, 17: 1055–1060[19]Yant L, Mathieu J, Schmid M. Just say no: floral repressors help Arabidopsis bide the time. Curr Opin Plant Biol, 2009, 12: 1–7[20]Sheldon C C, Conn A B, Dennis E S, Peacock W J. Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell, 2002, 14: 2527–2537[21]Kaufmann K, Melzer R, Theigen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005, 347: 183–198[22]Tang Q-L(汤青林), Xu J-Q(许俊强), Song M(宋明), Wang Z-M(王志敏). Determination of interactions between the two determinant transcription factors of flowering signal integrators in vitro in Brassica juncea Coss. (mustard). Acta Hort Sin (园艺学报), 2011, 38(12): 2317–2324 (in Chinese with English abstract)[23]Yang Y(杨洋), Gao Q-G(高启国), Song M(宋明), Niu Y(牛义), Tang Q-L(汤青林), Zhu L-Q(朱利泉), Wang X-J(王小佳). In vitro study on the interaction s between determinant factors of self-incompatibility in Brassica oleracea. var. capitata. Acta Hort Sin (园艺学报), 2009, 36 (3): 355–362 (in Chinese with English abstract)[24]Immink R, Kaufmann K, Angenent G C. The ‘ABC’ of MADS domain protein behavior and interactions. Sem Cell Dev Biol, 2010, 21: 87–93[25]Gregis V, Sessa A, Colombo L, Kater M M. AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell, 2006, 18: 1373–1382[26]Pelaz S, Gustafson B C, Kohalmi S E, Crosby W L, Yanofsky M F. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J, 2001, 26: 385–394[27]Ferrandiz C, Gu Q, Martienssen R, Yanofsky M F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development, 2000, 127: 725–734[28]Riechmann J L, Krizek B A, Meyerowitz E M. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA, 1996, 93: 4793–4798[29]An Y-H(安颖慧), Li X-F(李小方), Zhu J-X(朱金鑫), Shao X-H(邵兴华), Sun Y(孙越), Xiong L-J(熊莉君). The screening of interaction factors with BoCAL and BoAP1 related to curd formation. J Mol Cell Biol (分子细胞生物学报), 2007, 40(2): 130–136 (in Chinese with English abstract)[30]Ng M, Yanofsky M F. Activation of the Arabidopsis B class homeotic genes by APETALA1. Plant Cell, 2001, 13: 739–754 |
[1] | 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332. |
[2] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[3] | 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530. |
[4] | 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209. |
[5] | 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236. |
[6] | 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径[J]. 作物学报, 2020, 46(9): 1322-1331. |
[7] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[8] | 李隆,程成,伍小方,张大为,刘丽莉,周静,周美亮,张凯旋,严明理. 芥菜型油菜毛状根诱导体系构建及TTG1基因功能初步研究[J]. 作物学报, 2018, 44(10): 1468-1476. |
[9] | 李媚娟,苏良辰,刘帅,李晓云,李玲. 花生AhHDA1互作蛋白AhGLK的筛选及特性分析[J]. 作物学报, 2017, 43(02): 218-225. |
[10] | 王刚,张向向,徐平,吕泽文,文静,易斌,马朝芝,涂金星,傅廷栋,沈金雄*. 芥菜型油菜多室基因Bjmc2的精细定位[J]. 作物学报, 2016, 42(12): 1735-1742. |
[11] | 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766. |
[12] | 张小红,许鹏博,郭萌萌,徐兆师,李连城,陈明,马有志. 拟南芥G蛋白α亚基GPA1互作蛋白铜离子结合蛋白AtBCB的鉴定及功能分析[J]. 作物学报, 2013, 39(11): 1952-1961. |
[13] | 汪信东,陈亮,张增艳. 抗小麦黄矮病相关蛋白激酶TiDPK1与BYDV外壳蛋白的互作[J]. 作物学报, 2013, 39(10): 1720-1726. |
[14] | 邱志刚, 徐兆师, 郑天慧, 李连城, 陈明, 马有志. 小麦ERF转录因子W17互作蛋白的筛选和解析[J]. 作物学报, 2011, 37(05): 803-810. |
[15] | 严明理, 刘显军, 官春云, 刘丽莉, 陆赢, 刘忠松. 芥菜型油菜TT1基因的克隆和SNP分析[J]. 作物学报, 2010, 36(10): 1634-1641. |
|