作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1334-1338.doi: 10.3724/SP.J.1006.2012.01334
吴磊,王丹,苏文悦,郭长虹*,束永俊*
WU Lei, WANG Dan,SU Wen-Yue,GUO Chang-Hong*,SHU Yong-Jun*
摘要: 为开发和利用小麦野生近缘种的有益基因, 采用比较基因组学方法, 通过拟斯卑尔脱山羊草EST(expressed sequence tag)与小麦UniGene序列的比对分析, 发现山羊草插入/缺失(InDel)位点137个, 在这些位点两端序列设计引物24对, 通过在15个小麦野生近缘属种基因组DNA的扩增分析, 发现11对引物具多态性, 可以作为InDel标记。这些包含突变位点的基因涉及亚细胞定位、蛋白质结合与催化以及代谢等过程。
[1]Salse J, Chague V, Bolot S, Magdelenat G, Huneau C, Pont C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens B, Charles M, Ravel C, Samain S, Charmet G, Boudet N, Chalhoub B. New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics, 2008, 9: 555[2]Friebe B, Qi L L, Nasuda S, Zhang P, Tuleen N A, Gill B S. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet, 2000, 101: 51–58[3]Cherukuri D P, Gupta S K, Charpe A, Koul S, Prabhu K V, Singh R B, Haq Q M R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica, 2005, 143: 19–26[4]Noori S. Assessment for salinity tolerance through intergeneric hybridisation: Triticum durum × Aegilops speltoides. Euphytica, 2005, 146: 149–155[5]Mago R, Zhang P, Bariana H, Verlin D, Bansal U, Ellis J, Dundas I. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor Appl Genet, 2009, 119: 1441–1450[6]Marais G, Bekker T, Eksteen A, McCallum B, Fetch T, Marais A. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica, 2010, 171: 71–85[7]Pshenichnikova T, Lapochkina I, Shchukina L. The inheritance of morphological and biochemical traits introgressed into common wheat (Triticum aestivum L.) from Aegilops speltoides Tausch. Genet Resour Crop Evol, 2007, 54: 287–293[8]Naik S, Gill K S, Prakasa Rao V S, Gupta V S, Tamhankar S A, Pujar S, Gill B S, Ranjekar P K. Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet, 1998, 97: 535–540[9]Picoult-Newberg L, Ideker T E, Pohl M G, Taylor S L, Donaldson M A, Nickerson D A, Boyce-Jacino M. Mining SNPs from EST databases. Genome Res, 1999, 9: 167–174[10]Batley J, Barker G, O’Sullivan H, Edwards K J, Edwards D. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol, 2003, 132: 84–91[11]Yanagisawa T, Kiribuchi-Otobe C, Hirano H, Suzuki Y, Fujita M. Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker. Theor Appl Genet, 2003, 107: 84–88[12]Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep, 2008, 27: 617–631[13]Chen H, Li L, Wei X, Li S, Lei T, Hu H, Wang H, Zhang X. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull, 2005, 50: 2328–2336[14]Feltus F A, Wan J, Schulze S R, Estill J C, Jiang N, Paterson A H. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res, 2004, 14: 1812–1819[15]Gao L F, Jing R L, Huo N X, Li Y, Li X P, Zhou R H, Chang X P, Tang J F, Ma Z Y, Jia J Z. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet, 2004, 108: 1392–1400[16]Mao X-G(毛新国), Tang J-F(汤继凤), Zhou R-H(周荣华), Jing R-L(景蕊莲), Jia J-Z(贾继增) . Wheat cSNP mining based on full-length cDNA qequences. Acta Agron Sin (作物学报), 2006, 32(12): 1836–1840 (in Chinese with English abstract)[17]Wei L-B(魏利斌), Zhang H-Y(张海洋), Zhen Y-Z(郑永战), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Development and utilization of EST-derived microsatellites in sesame (Sesamum indicum L.). Acta Agron Sin (作物学报), 2008, 34(12): 2077–2084 (in Chinese with English abstract)[18]Zhuang L-F(庄丽芳), Song L-X(宋立晓), Feng W-G(冯祎高), Qian B-L(钱保俐), Xu H-B(徐海滨), Pei Z-Y(裴自友), Qi Z-J(亓增军). Development and chromosome mapping of 81 new wheat EST-SSR markers and application for characterizing rye chromosomes added in wheat. Acta Agron Sin (作物学报), 2008, 34(6): 926–933 (in Chinese with English abstract)[19]Hong Y-B(洪彦彬), Chen X-P(陈小平), Liu H-Y(刘海燕), Zhou G-Y(周桂元), Li S-X(李少雄), Wen S-J(温世杰), Liang X-Q(梁炫强). Development and utiligaiton of orthologous SSR markers in Arachis through soybean (Glycine max) EST. Acta Agron Sin (作物学报), 2010, 36(3): 410–421 (in Chinese with English abstract)[20]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4326[21]Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet, 2000, 16: 276–277[22]Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol, 2000, 132: 365–386[23]Swarbreck D, Wilks C, Lamesch P, Berardini T Z, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucl Acids Res, 2008, 36: D1009–D1014[24]Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res, 1997, 25: 3389–3402[25]Gao L, Tang J, Li H, Jia J. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed, 2003, 12: 245–261 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|