欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1468-1476.doi: 10.3724/SP.J.1006.2018.01468

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

芥菜型油菜毛状根诱导体系构建及TTG1基因功能初步研究

李隆1,2,程成1,2,伍小方1,2,张大为1,3,刘丽莉1,3,周静1,周美亮2,张凯旋2,*(),严明理1,3,*()   

  1. 1湖南科技大学生命科学学院, 湖南湘潭 411201
    2中国农业科学院作物科学研究所, 北京 100081
    3湖南科技大学重金属污染土壤生态修复与安全利用湖南省普通高等学校重点实验室, 湖南湘潭 411201
  • 收稿日期:2018-02-14 接受日期:2018-06-12 出版日期:2018-10-10 网络出版日期:2018-07-02
  • 通讯作者: 张凯旋,严明理
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0100202);湖南省自然科学基金项目(2016JJ1010);国家自然科学基金项目(31572457);湖南省教育厅项目(17K035)

Construction of Hairy Root Induction System and Functional Analysis of TTG1 Gene in Brassica juncea

Long LI1,2,Cheng CHENG1,2,Xiao-Fang WU1,2,Da-Wei ZHANG1,3,Li-Li LIU1,3,Jing ZHOU1,Mei-Liang ZHOU2,Kai-Xuan ZHANG2,*(),Ming-Li YAN1,3,*()   

  1. 1 College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
  • Received:2018-02-14 Accepted:2018-06-12 Published:2018-10-10 Published online:2018-07-02
  • Contact: Kai-Xuan ZHANG,Ming-Li YAN
  • Supported by:
    This study was supported by the National Key Research and Development Program(2016YFD0100202);the Natural Science Foundation of Hunan Province(2016JJ1010);the National Natural Science Foundation of China(31572457);the Foundation of Hunan Education Department(17K035)

摘要:

黄籽油菜具有种皮薄、出油率高等优点, 研究油菜黄籽的形成具有重要的意义。前期研究表明, TTG1 (TRANSPARENT TESTA GLABRA 1)基因参与了油菜种皮颜色的形成。本研究利用发根农杆菌A4菌株诱导了芥菜型油菜四川黄籽的毛状根, 并研究了菌液浓度和外植体部位对诱导率的影响。结果表明, 菌液浓度OD值为0.8时, 诱导效率最高, 平均为71.5%; 外植体中下胚轴的发根率最高, 平均为87.3%。在四川黄籽毛状根中过表达TTG1基因, 发现原花色素合成途径中的DFR (dihydroflavonol4-reductase)、ANS (anthocyanidin synthase)和BAN (anthocyanidin reductase)基因的表达受到抑制。本研究优化了油菜毛状根的诱导体系, 为利用毛状根体系进行基因功能验证提供了新的思路和方法。

关键词: 芥菜型油菜, 毛状根, 诱导条件, TTG1基因, 原花色素

Abstract:

Yellow seed rape has the advantages of thin seed coat and high oil yield. It is of great significance to study the formation of yellow seed in rapeseed. Previous studies showed that TTG1 (TRANSPARENT TESTA GLABRA 1) gene was involved in the formation of seed coat color. In this study, Agrobacterium rhizogenes A4 strain was used to induce hairy roots of Sichuan yellow, and investigate the effects of bacterial concentration and different sources of explants on hairy root induction. The highest average rooting rate was 71.5% when the OD value of A. rhizogenes A4 reached to 0.8. The average rooting rate of hypocotyls was significantly higher than that of cotyledons and up to 87.3% after the infection. Overexpression of TTG1 gene in Sichuan yellow hairy roots inhibited the expression of DFR (Dihydroflavonol4-reductase), ANS (Anthocyanidin synthase), and BAN (Anthocyanidin reductase) genes, encoding key enzymes of the proanthocyanidins biosynthesis. In this study, we optimized the induction system of hairy roots in B. juncea, and analyzed the function of TTG1 in the regulation of proanthocyanidins synthesis pathway, which provide a new idea and method for the functional analysis of genes in the hairy root system.

Key words: Brassica juncea, hairy root, inducing condition, TTG1 gene, proanthocyanidins

表1

qRT-PCR引物表"

基因
Gene
名称
Name
引物
Primer (5°-3°)
PCR长度
PCR length (bp)
BAN Anthocyanidin reductase F: ATCTTCCATGTCGCAACTCC
R: CGAGAGAGATAAACTGCTAG
200
DFR Dihydroflavonol4-reductase F: AGGATTCATTGGTTCATGGCTCG
R: TCCGTTTATGGCGTCATCGTAGC
189
ANS Anthocyanidin synthase F: GGACAACTTGAGTGGGAAGATTA
R: GCAAACGAAGACACTTAGCGTAC
132
TTG1 protein (“WD40” or “WDR”) F: GGCTGTAAGCATATCTGTTCCG
R: GAGAAAGCAATCCCAATCCAATG
173
内参
Internal reference
Actin7 F: GCTGACCGTATGAGCAAAG
R: AAGATGGATGGACCCGAC
182

表2

不同外植体对油菜毛状根诱导率的影响"

外植体
Explant
感染外植体数量
Number of infected explants
外植体发根数量
Number of explants rooted
诱导率
Induction rate (%)
下胚轴 Hypocotyl 30 26.2±0.3 a 87.3±0.01 a
子叶 Cotyledon 30 12.0±0.5 b 40.0±0.02 b

图1

毛状根的诱导过程 A: 14 d的四川黄籽油菜幼苗; B: 诱导7 d发根的外植体; C: 14 d以后的毛状根; D: 21 d以后转移到筛选培养基;E: 28 d在液体培养基上; F: 42 d以后的毛状根。"

图2

不同浓度菌液对毛状根的诱导效率"

图3

载体构建图 A: pCAMBIA3301载体; B: 改造后的载体。"

图4

转化菌液的检测 A: 35S-TTG1阳性检测结果。+: pCAMBIA3301-TTG1, -: H2O; B: GUS 阳性检测结果。+: pCAMBIA3301质粒, -: H2O。"

图5

转基因毛状根的鉴定 A: 转GUS基因的3个根系Z1、Z2、Z3的PCR阳性检测。+: pCAMBIA3301质粒; -: 野生型毛状根; B: 转TTG1基因的3个根系T1、 T2、T3的PCR阳性检测。+: pCAMBIA3301-TTG1; -: 野生型毛状根。"

图6

野生型和转GUS基因毛状根的染色结果 L1、L2、L3: 野生型的3个根系; Z1、Z2、Z3: 含有GUS基因的3个根系。"

图7

野生型和转基因毛状根生长状况 A1: 野生型毛状根根尖转入0 d状态; B1: 转GUS基因毛状根根尖0 d状态; C1: 转TTG1毛状根根尖0 d状态; A2: 野生型毛状根转入14 d状态; B2: 转GUS基因毛状根14 d状态; C2: 转TTG1毛状根14 d状态。"

图8

qRT-PCR检测相关基因的表达量 A: TTG1基因; B: DFR基因; C: ANS基因; D: BAN基因。"

图9

拟南芥原花青素代谢途径中TT2、TT8和TTG1形成MBW复合体调控DFR、ANS和BAN的示意图 PA代谢途径的酶基因分别为查尔酮合酶(CHS)、查尔酮异构酶(CHI)、黄烷酮3-羟化酶基因(F3H)、类黄酮3’-羟化酶基因(F3’H)、二氢黄酮醇4-还原酶(DFR)、花青素合成酶(ANS)、花色素还原酶(BAN)、谷胱甘肽S-转移酶(TT12)和MATE次级转运子(TT19)。"

[1] Zhou M L, Zhu X M, Shao J R, Tang Y X, Wu Y M . Production and metabolic engineering of bioactive substances in plant hairy root culture. Appl Microbiol Biotechnol, 2011,90:1229-1239
doi: 10.1007/s00253-011-3228-0 pmid: 21468707
[2] Largia M J V, Satish L, Johnsi R, Johnsi R, Shilpha J, Ramesh M . Analysis of propagation of Bacopa monnieri( L.) from hairy roots, elicitation and Bacoside A contents of Ri transformed plants. World J Microbiol Biotechnol, 2016,32:131
[3] 黄建安, 刘仲华 . 毛状根培养与植物次生代谢物的生产. 微生物学杂志, 2003,23(5):35-39
doi: 10.3969/j.issn.1005-7021.2003.05.011
Huang J A, Liu Z H . Cultivation of hairy roots and production of plant secondary metabolites. J Microbiol, 2015,23(5):35-39 (in Chinese)
doi: 10.3969/j.issn.1005-7021.2003.05.011
[4] 袁玉辉 . 芥菜型油菜TT8干扰载体的构建及遗传转化. 湖南农业大学硕士学位论文, 湖南长沙, 2013
Yuan Y H . The Construction of TT8 Interference Vector and Genetic Transformation of Brassica juncea (L.). MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2013 ( in Chinese with English abstract)
[5] 谢伶俐, 李加纳, 殷家明, 柴友荣, 许本波, 林呐 . 根癌农杆菌介导转化甘蓝型油菜子叶GUS基因瞬表达. 中国油料作物学报, 2007,29(1):9-13
Xie L L, Li J N, Yin J M, Chai Y R, Xu B B, Lin N . Transient expression of GUS gene in cotyledons of rapeseed mediated by Agrobacterium tumefaciens. Chin J Oil Crop Sci, 2007,29(1):9-13 (in Chinese with English abstract)
[6] 刘静轶 . 发根农杆菌介导IRT1基因转化镉超富集植物油菜的研究. 北京交通大学硕士学位论文, 北京, 2014
Liu J T . Research on Agrobacterium rhizogenes-mediated IRTI Gene Transformation in Cd Hyperaccumulator Brassica campestris L. MS Thesis of Beijing Jiaotong University, Beijing, China, 2014 ( in Chinese with English abstract)
[7] 岳迎春 . 芥菜型油菜种皮颜色转录因子基因TT2遗传转化体系优化及种皮色素分析. 湖南农业大学硕士学位论文, 湖南长沙, 2010
Yue Y C . Pigment Analysis of the Seed Coat Color Transcription Factor Gene TT2 Genetic Transformation System Optimization in Brassic juncea. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2010 ( in Chinese with English abstract)
[8] 严明理, 刘显军, 刘忠松, 官春云, 袁谋志, 熊兴华 . 芥菜型油菜4-二氢黄酮醇还原酶基因的克隆和表达分析. 作物学报, 2008,34:1-7
Yan M L, Liu X J, Liu Z S, Guan C Y, Yuan M Z, Xiong X H . Cloning and expression analysis of the dihydroflavonol 4-reductase gene in Brassica juncea. Acta Agron Sin, 2008,34:1-7 (in Chinese with English abstract)
[9] Yan M L, Liu X J, Guan C Y, Chen X B, Liu Z S . Cloning and expression analysis of an anthocyanidin synthase gene homolog from Brassica juncea. Mol Breed, 2011,28:313-322
doi: 10.1007/s11032-010-9483-4
[10] Liu L L, Huang T, Ding S P, Wang Y, Yan M L . BANYULS genes from Brassica juncea and Brassica nigra: cloning, evolution and involvement in seed coat color. J Agric Sci, 2016,155:421-430
[11] Gonzalez A, Zhao M, Leavitt J M, Lloyd A M . Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008,53:814-827
[12] Albert S, Delseny M, Devic M . BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J, 1997,11:289-299
doi: 10.1046/j.1365-313X.1997.11020289.x pmid: 9076994
[13] Zhang F, Gonzalez A, Zhao M, Payne C T, Lloyd A . A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development, 2003,130:4859-4869
doi: 10.1242/dev.00681 pmid: 12917293
[14] Zhou L H, Li Y L, Hussain N, Li Z L, Wu D Z, Jiang L X . Allelic variation of BnaC TT2.a and its association with seed coat color and fatty acids in rapeseed( Brassica napus L.). PLoS One, 2016,11:e0146661
[15] Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K . Natural mutations in two ohomoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea ( AABB). Theor Appl Genet, 2014,127:339-347
[16] 刘显军 . 芥菜型油菜黄籽基因克隆和黄籽形成机制分析 . 湖南农业大学博士学位论文, 湖南长沙, 2013
Liu X J . Positional Cloning of the Gene for Seed Color and Molecular Mechanism of Yellow Seed Formation in Brassica juncea. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2013 ( in Chinese with English abstract)
[17] Liu K G, Qi S H, Li D, Jin C Y, Gao C H, Duan S W, Feng B L, Chen M X . TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica). Plant Sci, 2017,254:60-69
[18] Buer C S, Djordjevic M A . Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J Exp Bot, 2009,60:751-763
[19] Liu X W, Bartholomew E, Cai Y L, Ren H Z . Trichome-related mutants provide a new perspective on multicellular trichome initiation and development in cucumber (Cucumis sativus L.). Front Plant Sci, 2016,7:1187
[20] 严明理 . 芥菜型油菜黄籽形成的分子机理研究. 湖南农业大学博士学位论文, 湖南长沙, 2007
Yan M L . Studies on the Molecular Mechanism of Yellow- seeded Formation in Brassica juncea. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2007 ( in Chinese with English abstract)
[21] 朱宽鹏 . 芪合酶基因Fm-STS在何首乌毛状根中过量表达与dsRNA干扰. 华南理工大学硕士学位论文, 广东广州, 2012
Zhu K P . Double-stranded RNA-mediated Gene Silencing and Over-expression of Fm-STS in Polygonum multiflarum Thunb Hairy Roots. MS Thesis of South China University of Technology, Guangzhou, Guangdong, China, 2012 ( in Chinese with English abstract)
[22] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262
[23] 王成龙 . 苦荞毛状根的诱导及高频再生体系的建立. 四川农业大学硕士学位论文, 四川雅安 2015
Wang C L . Induction Hairy Roots and Established High- Frequency Plant Regeneration System of Tartary Buckwheat (Fagopyrum tataricum Gaertn.), Ya’an, Sichuan, China, 2015 ( in Chinese with English abstract)
[24] Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V . Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot, 2011,62:2465
doi: 10.1093/jxb/erq442
[25] Zhu Q L, Yu S Z, Zeng D C, Liu H M, Wang H C, Yang Z F, Xie X R, Shen R X, Tan J T, Li H Y, Zhao X C, Zhang Q Y, Chen Y L, Guo J X, Chen L T, Liu Y G . Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant, 2017,10:918-929
doi: 10.1016/j.molp.2017.05.008
[1] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[2] 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径[J]. 作物学报, 2020, 46(9): 1322-1331.
[3] 王刚,张向向,徐平,吕泽文,文静,易斌,马朝芝,涂金星,傅廷栋,沈金雄*. 芥菜型油菜多室基因Bjmc2的精细定位[J]. 作物学报, 2016, 42(12): 1735-1742.
[4] 严明理, 刘显军, 官春云, 刘丽莉, 陆赢, 刘忠松. 芥菜型油菜TT1基因的克隆和SNP分析[J]. 作物学报, 2010, 36(10): 1634-1641.
[5] 徐爱遐,黄镇,马朝芝,肖恩时,张修森,涂金星,傅廷栋.
芥菜型油菜FAE1基因序列特征及其与芥酸含量关系的初步分析
[J]. 作物学报, 2010, 36(05): 794-800.
[6] 刘显军,袁谋志**,官春云,陈社员,刘淑艳,刘忠松*. 芥菜型油菜黄籽性状的遗传、基因定位和起源探讨[J]. 作物学报, 2009, 35(5): 839-847.
[7] 王爱云;李栒;胡大有. 芥菜型油菜和黑芥与诸葛菜属间杂种的获得及其特性[J]. 作物学报, 2008, 34(09): 1557-1562.
[8] 徐爱遐;马朝芝;肖恩时;权景春;马长珍;田广文;涂金星;傅廷栋;张改生. 中国西部芥菜型油菜遗传多样性研究[J]. 作物学报, 2008, 34(05): 754-763.
[9] 严明理;刘显军;刘忠松;官春云;袁谋志;熊兴华. 芥菜型油菜4-二氢黄酮醇还原酶基因的克隆和表达分析[J]. 作物学报, 2008, 34(01): 1-7.
[10] 曾盔 ;刘忠松;龙桑;严明理. 芥菜型油菜黄黑种皮多酚差异的紫外-可见光谱研究[J]. 作物学报, 2007, 33(03): 476-481.
[11] 官春云;黄见良;李栒;田森林. 芥菜型油菜与甘蓝型油菜嫁接嵌合体的性状表现[J]. 作物学报, 2006, 32(08): 1244-1247.
[12] 陶均;谭汝芳;李玲. 发根农杆菌介导的向日葵遗传转化[J]. 作物学报, 2006, 32(05): 743-748.
[13] 周清元;李加纳;崔翠;殷家明;谌利;唐章林. 芥菜型油菜×羽衣甘蓝种间杂种的获得及其性状表现[J]. 作物学报, 2005, 31(08): 1058-1063.
[14] 李栒;官春云;陈社元;王国槐;刘忠松. 油菜小孢子培养和双单倍体育种研究Ⅱ. 影响甘蓝型油菜和芥菜型油菜种间杂种胚产量的因素[J]. 作物学报, 2003, 29(05): 744-749.
[15] 旦巴;涂金星;胡书银;何余堂;王建林;陈宝元;栾运芳;尼玛卓玛;孟霞;卓嘎. 西藏油菜种质资源的RAPD分子标记分析[J]. 作物学报, 2003, 29(01): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!