欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1634-1641.doi: 10.3724/SP.J.1006.2010.01634

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

芥菜型油菜TT1基因的克隆和SNP分析

严明理1,2,刘显军2,官春云2,刘丽莉1,陆赢1,2,刘忠松2, *   

  1. 1湖南科技大学生命科学学院,湖南湘潭410201;2湖南农业大学油料作物研究所,湖南长沙410128
  • 收稿日期:2010-04-05 修回日期:2010-05-03 出版日期:2010-10-12 网络出版日期:2010-08-04
  • 通讯作者: 刘忠松,E-mail:zsliu48@sohu.com;Tel:0731-84617381
  • 基金资助:

    本研究由国家自然科学基金(30471098),湖南省自然科学基金(09JJ6059),湖南省教育厅青年基金(09B029),作物种质创新与资源利用国家重点实验室培育基地开放基金(2009-3)资助。

Cloning and SNP Analysis of TT1 Gene in Brassica juncea

YAN Ming-Li1,2,LIU Xian-Jun2,GUAN Chun-Yun2,LIU Li-Li1,LU Ying1,2,LIU Zhong-Song2,*   

  1. 1 School of Biology, Hunan University of Science and Technology, Xiangtan 411201, China; 2 Oilseed Research Institute, Hunan Agricultural University, Changsha 410128, China
  • Received:2010-04-05 Revised:2010-05-03 Published:2010-10-12 Published online:2010-08-04
  • Contact: LIU Zhong-song,E-mail:zsliu48@sohu.com;Tel:0731-84617381

摘要: 拟南芥的TT1基因(编码含有WIP结构域的锌指蛋白)对种皮的发育和颜色的形成具有重要的调控作用。本研究利用同源克隆和RACE技术分离了芥菜型油菜TT1基因,在芥菜型油菜黄黑籽材料的种皮中进行转录水平的分析,比较了黑籽油菜与黄籽油菜基因序列的差异, 并采用等位基因特异(allele-specific) PCR技术对可能存在的单核苷酸多态位点进行验证。结果表明,芥菜型油菜TT1基因的DNA序列全长为2 197 bp,包含1个内含子,与甘蓝型油菜TT1-1基因的DNA序列的相似性为99%,与拟南芥的TT1基因DNA序列的相似性为85%;推导的TT1序列为300氨基酸残基,理论分子量为33. 97 kD, 等电点为6.99;TT1在所有材料的种皮中均检测到表达;比较紫叶芥、四川黄籽、NILA和NILB的TT1基因序列,共发现8个核苷酸变异位点,均在基因的外显子区域,其中紫叶芥和NILA的序列相同,四川黄籽和黒籽近等基因系NILB的序列相同。与紫叶芥相比,黒籽近等基因系NILB有8个核苷酸差异,但种皮颜色与紫叶芥一样,均为黑色,TT1基因这些位点的突变并不影响芥菜型油菜种皮的颜色。通过等位特异PCR可以区分来自四川黄籽与紫叶芥的TT1基因。

关键词: 芥菜型油菜, TT1基因, 克隆, 单核苷酸多态性

Abstract: The quality of rapeseed can be further improved through the development of yellow-seeded cultivars, which are known to contain less lignin and more proteins, both enhancing the dietary feed value. The TT1 gene encodes a WIP domain protein with Zn-finger, which is essential for seed coat development and organ color in Arabidopsis, its mutation causes transparent testa. In order to study molecular mechanism of seed coat color in rapeseed, TT1 gene was cloned from Brassica juncea using homology-based cloning and RACE (rapid-amplification of cDNA ends) strategy. A modified allele-specific PCR procedure developed for assaying single nucleotide polymorphisms of TT1 gene in Brassica juncea. In this study, cloning and characterization of the orthologous TT1 gene from Brassica juncea were reported. The full length DNA sequence of TT1 gene was 2 197 bp with one intron. The TT1 cDNA sequence was 1 412 bp in length, 903 bp of which was open reading frames (ORF) encoding a deduced polypeptide of 300 amino acids with a predicted molecular weight of 33.97 kD and an isoelectric point of 6.99. The above-mentioned genomic sequences showed 99% identity with the TT1 gene from Brassica napus, and 85% identity with the TT1 gene from Arabidopsis. RT-PCR analysis showed that TT1 expressed in the seed coats of both the black- and the yellow-seeded B. juncea lines. Comparison of sequences of Sichuan Yellow (yellow seed) and purple-leaf mustard (black seed) revealed nucleotide variation at the eight sites which all are located within the coding region of the gene. However, the mutations of the TT1 gene at these sites had no effect on the seed coat color in B. juncea through comparing the sequences of NILB and purple-leaf mustard. The allele-specific PCR of the TT1 gene could distinguish purple-leaf mustard from Sichuan Yellow.

Key words: Brassica juncea, TT1, Cloning, Single nucleotide polymorphism

[1] Rashid A, Rakow G, Downey R K. Development of yellow seeded Brassica napus through interspecific crosses. Plant Breed, 1994, 112: 127–134
[2] Rahman M H, Joersho M , Poulsen M H. Development of yellow-seeded Brassica napus of double low quality. Plant Breed, 2001, 120: 473–478
[3] Vera C L, Woods D L. Isolation of independent gene pairs at two loci for seed coat color in Brassica juncea. Can J Plant Sci, 1982, 62: 47–50
[4] Yan M L, Liu Z S, Guan C Y, Chen S Y, Yuan M Z, Liu X J. Inheritance and molecular markers for the seed coat color in Brassica juncea. Front Agric China, 2009, 3: 1–6
[5] Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Ann Rev Plant Biol, 2006, 57: 405–430
[6] von Wettstein D. From analysis of mutants to genetic engineering. Ann Rev Plant Biol, 2007, 58: 1–19
[7] Chai Y R, Lei B, Huang H L, Li J N, Yin J M, Tang Z L, Wang R, Chen L. TRANSPARENT TESTA 12 genes from Brassica napus and parental species: Cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genom, 2009, 281: 109–123
[8] Debeaujon I, Leon-Kloosterziel K M, Koornneef M. Influence of the testa on seed dormancy, germination and longevity in Arabidopsis. Plant Physiol, 2000, 122: 403–413
[9] Sharma S B, Dixon R A. Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J, 2005, 44: 62–75
[10] Sagasser M, Lu G H, Hahlbrock K, Weisshaar B. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev, 2002, 16: 138–149
[11] Nesi N, Lucas M O, Auger B, Baron C, Lecureuil A, Guerche P, Kronenberger J, Lepiniec L, Debeaujon I, Renard M. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidins-accumulating cells of Brassica napus seed coat. Plant Cell Rep, 2009, 28: 601–617
[12] Liu X-J(刘显军), Yuan M-Z(袁谋志), Guan C-Y(官春云), Chen S-Y(陈社员), Liu S -Y(刘淑艳), Liu Z-S(刘忠松). Inheritance, mapping, and origin of yellow-seeded trait in Brassica juncea. Acta Agron Sin (作物学报), 2009, 35(5): 839−847 (in Chinese with English abstract)
[13] Yan M-L(严明理), Liu Z-S(刘忠松), Guan C-Y(官春云), Chen S-Y(陈社员), Liu X-J(刘显军). Method for high-quality RNA isolation from the seeds and their testa of Brassica species. Biotech Bull生物技术通报), 2007, (6): 97–100 (in Chinese with English abstract) (
[14] Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation: version II. Plant Mol Biol Rept, 1983, 1: 19–21
[15] Yan M-L(严明理), Liu X-J(刘显军), Liu Z-S(刘忠松), Guan C-Y(官春云), Yuan M-Z(袁谋志), Xiong X-H(熊兴华). Cloning and expression analysis of the dihydroflavonol 4-reductase gene in Brassica juncea. Acta Agron Sin (作物学报), 2008, 34(1): 1–7 (in Chinese with English abstract)
[16] Drenkard E, Richter B G, Rozen S, Stutius L M, Angell N A, Mindrinos M, Cho R J, Oefner P J, Davis R W, Ausubel F M. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol, 2000, 124: 1483–1492
[17] Hayashi K, Hashimoto N, Daigen M, Ashikawa I. Development of PCR-based SNP markers for rice blast resistance genes at the Pi-z locus. Theor Appl Genet, 2004, 108: 1212–1220
[18] Lu X-C(路小春). Molecular Cloning of Transparent Testa (BnTT1) Gene Family Encoding WIP-Zinc Finger Proteins and Differential Expression between Yellow- and Black-seeded Lines of Brassica napus. MS Dissertation of Yunnan Agricultural University, 2006 (in Chinese with English abstract)
[19] Wolfe S A, Nekludova L, Pabo C O. DNA recognition by Cys2His2 zinc finger proteins. Ann Rev Biophys Biomol Struct, 2000, 29: 183–212
[20] Mackay J P, Crossley M. Zinc fingers are sticking together. Trends Biochem Sci, 1998, 23: 1–4
[21] Laity J H, Lee B M, Wright P E. Zinc finger proteins: New insights into structural and functional diversity. Curr Opin Struct Biol, 2001, 11: 39–46
[22] Auger B, Baron C, Lucas M O, Vautrin S, Berges H, Chalhoub B, Fautrel A, Renard M, Nesi N. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta, 2009, 230: 1167–1183
[23] Wu Y H, Xiao L, Wu G , Lu C M. Cloning of fatty acid elongase 1 gene and molecular identification of A and C genome in Brassica species. Sci China (Ser C-Life Sci), 2007, 50: 343–349
[24] Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol, 2001, 126: 485–493
[25] Lysak M A, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Nat Acad Sci USA, 2006, 103: 5224–5229
[26] Lysak M A, Cheung K, Kitschke M, Bures P. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol, 2007, 145: 402–410
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[6] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[7] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[8] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[11] 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183.
[12] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[13] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[14] 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径[J]. 作物学报, 2020, 46(9): 1322-1331.
[15] 彭勃,赵晓雷,王奕,袁文娅,李春辉,李永祥,张登峰,石云素,宋燕春,王天宇,黎裕. 玉米叶向值的全基因组关联分析[J]. 作物学报, 2020, 46(6): 819-831.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!