欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1483-1493.doi: 10.3724/SP.J.1006.2012.01483

• 耕作栽培·生理生化 • 上一篇    下一篇

华北地区冬小麦产量潜力分布特征及其影响因素

李克南1,杨晓光1,刘园1,2,荀欣1,刘志娟1,王静1,3,吕硕1,王恩利1,4   

  1. 1中国农业大学资源与环境学院,北京 100193;2中国农业科学院农业环境与可持续发展研究所,北京 100193;3宁夏气象科学研究所,宁夏银川 750002;4 CSIRO Land and Water, GPO Box 1666, Black Mountain, Canberra, ACT 2601, Australia
  • 收稿日期:2011-12-26 修回日期:2012-04-20 出版日期:2012-08-12 网络出版日期:2012-06-04
  • 通讯作者: 杨晓光, E-mail: yangxg@cau.edu.cn

Distribution Characteristics of Winter Wheat Yield and Its Influenced Factors in North China

LI Ke-Nan1,YANG Xiao-Guang1,*,LIU Yuan1,2,XUN Xin1,LIU Zhi-Juan1,WANG Jing1,3,LÜ Shuo1,WANG En-Li1,4   

  1. 1`College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; 2Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3Ningxia Institute of Meteorological Science, Yinchuan 750002, China; 4CSIRO Land and Water, GPO Box 1666, Black Mountain, Canberra, ACT 2601, Australia
  • Received:2011-12-26 Revised:2012-04-20 Published:2012-08-12 Published online:2012-06-04
  • Contact: 杨晓光, E-mail: yangxg@cau.edu.cn

摘要: 利用华北地区农业气象观测站作物资料,验证APSIM-Wheat作物模拟模型区域尺度有效性,结合1961—2007年47年逐日气候资料,分析冬小麦潜在产量、水分限制产量和水氮限制产量时空分布特征,明确了气候因素对冬小麦不同等级产量潜力分布特征的影响程度。对APSIM-Wheat模型在华北地区区域尺度上进行验证,结果显示区域化模型在华北地区有较好的适用性。华北地区冬小麦各层次产量在时间上总体呈下降趋势,空间上呈带状分布,不同层次产量空间分布特征有所差别:冬小麦潜在产量从东北向西南减少,水分限制产量从东南向西北递减,水氮限制产量从东向西先增加后降低在山东济宁地区达到最大;河北省为冬小麦潜在产量和水氮限制产量的高值区,同时为水分限制产量的低值区,增加灌溉是提高其产量的主要途径;山东省为冬小麦潜在产量和水分限制产量的高值区,水氮限制产量的低值区,增施氮肥是提高其产量的主要途径;河南省为冬小麦潜在产量的低值区,辐射是其主要限制因素。决定冬小麦潜在产量时空分布特征的最主要气候要素为生长季内总辐射,总辐射与潜在产量呈极显著正相关关系;决定冬小麦水分限制产量分布特征的最主要气候要素为冬小麦生长季内降水量,呈极显著正相关关系;气候要素对于冬小麦水氮限制产量空间分布特征的解释方差较小,仅为0.48,故土壤等其他因素对其空间分布影响较大。气候变化背景下,如不改变作物品种,冬小麦各级产量潜力呈下降趋势,造成其下降的主要原因为总辐射下降以及随积温增加冬小麦生长季缩短,决定冬小麦产量潜力空间分布的主要因素为总辐射和降水量。

关键词: 气候变化, 华北地区, 冬小麦, APSIM-Wheat模型, 潜在产量

Abstract: APSIM-Wheat model was validated in regional level with crop data from agrometeorological observation stations in North China. Combining the daily climatic data during 1961–2007, the spatiotemporal distribution characteristics were analyzed in potential yield, water-restricted yield, and water-nitrogen-restricted yield of winter wheat to understand the influences of climatic factors on potential yield in different levels. The APSIM-Wheat model was proved to be applicable in North China. In the region, the potential yields of winter wheat in different levels showed a zonal distribution in space with a generally temporal decline; however, the differences of spatial distribution characteristics were distinct among yield levels. The decreasing trends were from northeast to southwest in potential yield of winter wheat, from southeast to northwest in water restricted yield, and from west to east before a decreasing from east to west in water and nitrogen restricted yield, with the maximum values in Jining, Shandong Province.Hebei Province was located in the zone of high values of potential yield and water and nitrogen restricted yield but low value of water restricted yield, where irrigation was the main factor to improve the yield of winter wheat. Shandong Province was in the zone of high values of potential yield and water restricted yield but low value of water and nitrogen restricted yield, where nitrogen fertilizer was the main factor to improve the yield of winter wheat. Henan Province was a zone of low value of potential yield, where radiation was a main restraint. The total radiation during the growing season was a major climatic factor that determined the spatiotemporal distribution characteristics of the simulated potential yield of winter wheat, and it was positively correlated with the potential yield (P < 0.01). Precipitation during the growing season was the most important climatic factor for distribution characteristics of water restricted yield, which was positively correlated with water restricted yield (P < 0.01). In contrast, the variance of water and nitrogen restricted yield explained by climate factors was only 0.48, suggesting that soil factors were determinative rather than climatic factors. Under the background of changed climate and unchanged varieties of winter wheat, the potential yields at different levels showed declining trends which resulted from the decrease of radiation and the increase of accumulated temperature during wheat growing season. The primary climatic factors for determining the distribution characteristics of winter wheat yield were total radiation and precipitation.

Key words: Climate change, North China, Winter wheat, APSIM-Wheat model, Potential yield

[1]National Bureau of Statistics of China (中华人民共和国国家统计局). China Statistical Yearbook–2009 (中国统计年鉴2009). Beijing: China Statistics Press, 2010. pp 460–467(in Chinese)

[2]Odum E P. Sun R-Y(孙儒泳) trans. Fundamentals of Ecology (生态学基础). Beijing: People’s Education Press, 1981. pp 42–61 (in Chinese)

[3]Loomis R S, Williams W A. Maximum crop productivity: an estimate. Crop Sci, 1963, 3: 67–72

[4]FAO. Report on the Agro-ecological Zones Project. World Soil Resources Report: Africa, Southwest Asia, South and Central America, Southeast Asia. Rome: FAO, 1978–1981

[5]Yu H-N(于沪宁), Zhao F-S(赵丰收). On the light and thermal resources and the crop potential productivity: taking Luancheng County of Hebei Province as an example. Acta Meteorol Sin (气象学报), 1982, 40(3): 327–334 (in Chinese with English abstract)

[6]Long S-Y(龙斯玉). The geographical distribution of wheat yield in our country. J Nanjing Univ (Nat Sci) (南京大学学报•自然科学版), 1983, (3): 579–587 (in Chinese with English abstract)

[7]Hou G-L(侯光良), Liu Y-F(刘允芬). The climate productivity and its distribution of China. Nat Resour (自然资源), 1985, (3): 52–59 (in Chinese)

[8]Deng G-Y(邓根云), Feng X-H(冯雪华). The light and temperature resources and climate productivity of China. Nat Resour (自然资源), 1980, (4): 11–16 (in Chinese)

[9]Chen M-R(陈明荣), Long S-Y(龙斯玉). The study of the division of climate productivity potential in China. Nat Resour (自然资源), 1984, (3): 72–79 (in Chinese)

[10]Liang R-X(梁荣欣), Shen N-Z(沈能展). The estimation of the crop’s photosynthetic potential: the method of the correction of the leaf area. J Northeast Agric Coll (东北农学院学报), 1980, (2): 70–74 (in Chinese)

[11]Mearns L O, Rosenzweig C, Goldberg R. The effects of changes in daily and interannual climatic variability on CERES-Wheat: sensitivity study. Clim Change, 1996, 32: 257–292

[12]Baker D N, Lambert J R, McKinion J M. GOSSYM: A Simulator of Cotton Crop Growth and Yield. Clemson: Clemson University, 1983. pp 1–134

[13]Van Keulen H, Penning de Vries F W T, Drees E M. A summary model for crop growth. In: Penning de Vries F W T, van Laar H H, eds. Simulation of Plant Growth and Crop Production. Wageningen: PUDOC, 1982. pp 87–98

[14]Penning de Vries F W T, Jansen D M, ten Berge H F M, Bakema A. Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Wageningen: PUDOC, 1989. p 271

[15]McCown R L, Hammer G L, Hargreaves J N G, Holzworth D P, Freebairn D M. APSIM: a novel software system for model development, model testing and simulation in agricultural system research. Agric Syst, 1996, 50: 255–271

[16]Ma Y-P(马玉平), Wang S-L(王石立), Zhang L(张黎), Zhuang L-W(庄立伟). A preliminary study on a regional growth simulation model of winter wheat in north China based on scaling-up approach: IV. Potential production level. Acta Agron Sin (作物学报), 2005, 31(6): 697–705 (in Chinese with English abstract)

[17]Cong Z-T(丛振涛), Wang S-Z(王舒展), Ni G-H(倪广恒). Simulations of the impact of climate change on winter wheat production. J Tsinghua Univ (Sci &Tech) (清华大学学报•自然科学版), 2008, 48(9): 1426–1430 (in Chinese with English abstract)

[18]Ju H(居辉), Li S-A(李三爱), Yan C-R(严昌荣). Potential productivity of rain-fed wheat in dry farmlands of North China. Chin J Eco-Agric (中国生态农业学报), 2008, 16(3): 728–731 (in Chinese with English abstract)

[19]Chen C(陈超), Yu Q(于强), Wang E-L(王恩利), Xia J(夏军). Modeling the spatial distribution of crop water productivity in the North China plain. Resour Sci (资源与科学), 2009, 31(9): 1477–1485 (in Chinese with English abstract)

[20]Wang T(王涛), Lü C-H(吕昌河), Yu B-H(于伯华). Assessing the potential productivity of winter wheat using WOFOST in the Beijing-Tianjin-Hebei region. J Nat Resour (自然资源学报), 2010, 25(3): 475–487 (in Chinese with English abstract)

[21]Probert M E, Dimes J P, Keating B A, Dalal R C, Strong W M. APSIM’s water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agric Syst, 1998, 56: 1–28

[22]Chen C(陈超). Response of Crop Water Productivity and Water Balance to Climate Variability/Change in the North China Plain. PhD Dissertation of Chinese Academy of Sciences, 2009 (in Chinese with English abstract)

[23]Lü Y-Z(吕贻忠), Li B-G(李保国). Soil Science (土壤学). Beijing: China Agriculture Press, 2006. pp 15–64 (in Chinese)

[24]Jones H. Plant and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd Edn. Cambridge: Cambridge University Press, 1992. p 428

[25]Li Y(李艳), Xue C-Y(薛昌颖), Yang X-G(杨晓光), Wang J(王靖), Liu Y(刘园), Wang E-L(王恩利). Reduction of yield risk of winter wheat by appropriate irrigation based on APSIM model. Trans CSAE (农业工程学报), 2009, 25(10): 35–44 (in Chinese with English abstract)

[26]Wang L(王琳), Zheng Y-F(郑有飞), Yu Q(于强), Wang E-L(王恩利). Applicability of agricultural production system s simulator (APSIM) in simulating the production and water use of wheat-maize continuous cropping system in north China plain. Chin J Appl Ecol (应用生态学报), 2007, 18(11): 2480–2486 (in Chinese with English abstract)

[27]Ju H(屈辉), Xiong W(熊伟), Xu Y-L(许云龙), Lin E-D(林而达). Impacts of climate change on wheat yield in China. Acta Agron Sin (作物学报), 2005, 31(10): 1340–1343 (in Chinese with English abstract)

[28]Jiang M(江敏), Jin Z-Q(金之庆). A method to upscale the genetic parameters of CERES-Rice in regional applications. Chin J Rice Sci (中国水稻科学), 2009, 23(2): 172–178 (in Chinese with English abstract)

[29]Liu J-D(刘建栋), Yu Q(于强), Fu B-P(傅抱璞). The numerical simulation of winter wheat photo-temperature productivity in Huang-Huai-Hai region. J Nat Resour (自然资源学报), 1999, 14(2): 169–174 (in Chinese with English abstract)

[30]Wang H(王宏), Chen F(陈阜), Shi Q-H(石全红), Fan S-C(范士超), Chun Q-Q(褚庆全). Analysis of factors on impacting potential productivity of winter wheat in Huanghuaihai agricultural area over 30 years. Trans CSAE (农业工程学报), 2010, 26(suppl-1): 90–95 (in Chinese with English abstract)

[31]Wang S-Y(王素艳), Huo Z-G(霍治国), Li S-K(李世奎), Xue C-Y(薛昌颖), Mao F(毛飞). Water deficiency and climatic productive potentialities of winter wheat in north of China: study on its dynamic change in recent 40 years. J Nat Disasters (自然灾害学报), 2003, 12(1): 121–130 (in Chinese with English abstract)
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941.
[3] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[4] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[5] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
[6] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[7] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[8] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[9] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830.
[10] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[11] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[12] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[13] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[14] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
[15] 何昕楠,林祥,谷淑波,王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响[J]. 作物学报, 2019, 45(6): 879-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!