欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1471-1482.doi: 10.3724/SP.J.1006.2012.01471

• 耕作栽培·生理生化 • 上一篇    下一篇

超级稻花后强、弱势粒灌浆相关蛋白质表达的差异

陈婷婷,谈桂露,褚光,刘立军,杨建昌*   

  1. 扬州大学江苏省作物遗传生理重点实验室,江苏扬州225009
  • 收稿日期:2012-01-13 修回日期:2012-04-20 出版日期:2012-08-12 网络出版日期:2012-06-04
  • 通讯作者: 杨建昌, E-mail: jcyang@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金重大国际合作交流项目(31061140457), 国家自然科学基金项目(31071360), 江苏省基础研究计划项目(BK2009005), 2011年中央级科研院所基本科研业务费专项(农业) (201103003)和江苏省高校优势学科建设工程资助项目资助。

Differential Expressions of the Proteins Related to Grain Filling between Superior and Inferior Spikelets of Super Rice after Anthesis

CHEN Ting-Ting,TAN Gui-Lu,CHU Guang,LIU Li-Jun,YANG Jian-Chang*   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
  • Received:2012-01-13 Revised:2012-04-20 Published:2012-08-12 Published online:2012-06-04
  • Contact: 杨建昌, E-mail: jcyang@yzu.edu.cn

摘要: 为进一步揭示水稻强、弱势粒灌浆差异的机理,以2个超级稻品种两优培九(两系杂交籼稻)和淮稻9号(粳稻)为材料,通过双向电泳观察花后强、弱势粒灌浆相关蛋白质表达的差异并对差异蛋白进行质谱分析。结果表明,弱势粒花后3~15 d的灌浆速率和最终粒重均显著低小于强势粒。花后3 d、8 d和15 d弱势粒中蛋白质表达的点少于强势粒,花后25 d则弱势粒多于强势粒。花后强、弱势粒间差异蛋白质表达量在2倍以上的点有类似变化趋势。选择有显著差异的27个蛋白点进行质谱分析,其中14个点的功能得到鉴定。这些蛋白质分别参与籽粒的淀粉合成、蛋白合成、光合作用、能量代谢、环境适应以及细胞信号转导等。说明强、弱势粒间多种灌浆相关蛋白质表达的差异是其灌浆和粒重差异的重要原因。

关键词: 超级稻, 强、弱势粒, 灌浆相关蛋白质表达, 蛋白质功能, 籽粒灌浆

Abstract: Poor grain filling of the later-flowered inferior spikelets (in contrast to the earlier-flowered superior spikelets) is a serious problem in rice production. This problem is more aggravated in new bred super rice cultivars. To better understand the mechanism underlying the poor grain filling of inferior spikelets, we investigated the difference in expressions of the proteins related to grain filling in superior and inferior spikelets of two super rice cultivars, Liangyoupeijiu (indica hybrids) and Huaidao 9 (japonica) after anthesis through two-dimensional gel electrophoresis (SDS-PAGE) and the MALDI analysis. Results showed that the grain filling rate at 3–15 d after anthesis (DAA) and the final grain weight of inferior spikelets were much smaller than those of superior spikelets. The spots of protein expressed were fewer in inferior spikelets than in superior spikelets at 3, 8, and 15 DAA, and the results were reversed at 25 DAA. The spots of protein with two-fold expressions between superior and inferior spikelets showed a similar changing tendency. Twenty seven protein spots with significant difference in the expression between superior and inferior spikelets were chosen for the MALDI analysis, of which 14 protein spots were identified and their functions were analyzed. These proteins were involved in grain starch synthesis, protein synthesis, photosynthesis, energy metabolism, environmental adaptation and cell signal transduction. The results suggest that expression differences of the proteins related to grain filling account for the variation in grain filling between superior and inferior spikelets of rice.

Key words: Super rice, Superior/inferior spikelets, Expressions of the proteins related to grain filling, Protein function, Grain filling

[1]Kato T, Takeda K. Associations among characters related to yield sink capacity in space-planted rice. Crop Sci, 1996, 36: 1135–1139

[2]Yang J-C(杨建昌). Mechanism and regulation in the filling of inferior spikelets of rice. Acta Agron Sin (作物学报), 2010, 36(12): 2011–2019 (in Chinese with English abstract)

[3]Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical since the release of IR8 and its challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552–1559

[4]Peng S, Khush G S, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32–38

[5]Yang J, Peng S, Zhang Z, Wang Z, Visperas R M, Zhu Q. Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrids. Crop Sci, 2002, 42: 766–772

[6]Ao H-J(敖和军), Wang S-H(王淑红), Zou Y-B(邹应斌), Peng S-B(彭少兵), Tang Q-Y(唐启源), Fang Y-X(方远祥), Xiao A-M(肖安民), Chen Y-M(陈玉梅), Xiong C-M(熊昌明). Study on yield stability and dry matter characteristics of super hybrid rice. Sci Agric Sin (中国农业科学), 2008, 41(7): 1927–1936 (in Chinese with English abstract)

[7]Zhu Q-S(朱庆森), Cao X-Z(曹显祖), Luo Y-Q(骆亦奇). Growth analysis on the progress of grain filling in rice. Acta Agron Sin (作物学报), 1988, 14(3): 182–193 (in Chinese with English abstract)

[8]Iwasaki Y, Mae T, Makino A, Ohira K, Ojima K. Nitrogen accumulation in the inferior spikelet of rice ear during ripening. Soil Sci Plant Nutr, 1992, 38: 517–525

[9]Umemoto T, Nakamura Y, Ishikura N. Effect of grain location on the panicle on activities involved in starch synthesis in rice endosperm. Phytochem, 1994, 36: 843–847

[10]Yang J, Zhang J, Wang Z, Liu K, Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot, 2006, 57: 149–160

[11]Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot, 2007, 100: 959–966

[12]Liang J, Zhang J, Cao X. Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa) hybrids. Plant Physiol, 2001, 112: 470–477

[13]Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches. J Exp Bot, 1991, 42: 871–879

[14]Yang J, Zhang J, Huang Z, Wang Z, Zhu Q, Liu L. Correlation of cytokinin levels in the endosperm and roots with cell number division activity during endosperm development in rice. Ann Bot, 2002, 90: 369–377

[15]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm. Plant Sci, 1992, 82: 15–20

[16]Jeng T L, Wang C S, Chen C L, Sung J M. Effects of grain position on the panicle on starch biosynthetic enzyme activity in developing grains of rice cultivar Tainung 67 and its NaN3-induced mutant. J Agric Sci, 2003, 141: 303–311

[17]Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370–1374

[18]Twyman R M(怀特曼). Principles of Proteomics (蛋白质组学原理). Beijing: Chemical Industry Press, 2007. pp 1–4 (in Chinese)

[19]Komatsu S, Yano H. Update and challenges on proteomics in rice. Proteomics, 2006, 6: 4057–4068

[20]Komatsu S, Kajiwara H, Hirano H. A rice protein library: a data-file of rice proteins separated by two-dimensional electrophoresis. Theor Appl Genet, 1993, 86: 953–942

[21]Komatsu S, Muhammad A, Rakwal R. Separation and characterization of proteins from green and etiolated shoots of rice: towards a rice proteome. Electrophoresis, 1999, 20: 630–636

[22]Tsugita A, Kawakami T, Uchiyama Y, Kamo M, Miyatake N, Nozu Y. Separation and characterization of rice proteins. Electrophoresis, 1994, 15: 708–720

[23]Richards F J. A flexible growth function for empirical use. J Exp Bot, 1959, 10: 290–300

[24]Granier F. Extraction of plant proteins for two-dimensionnal electrophoresis. Electrophoresis, 1988, 9: 712–718

[25]Bradford M M. A rapid and sensitive method for the quantization of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254

[26]Zhao M(赵敏). Proteomic Analysis on Leaf and Grain in Different Nitrogen Treatments of the Rice Liangyoupeijiu (水稻两优培九不同氮素处理叶片和籽粒蛋白质组学研究). Fujian: Fujian Agriculture and Forestry University, 2008. pp 48–50 (in Chinese)

[27]Ma D, Xing Z, Liu B. NM23-H1 and NM23-H2 repress transcriptional activities of nuclease-hypersensitive elements in the platelet-derived growth factor-Apromotor. J Biol Chem, 2002, 277: 560–567

[28]Narayanan R, Ramaswami M. Regulation of dynamin by nucleoside diphosphate kinase. J Bioenerg Biomembr, 2003, 35: 9–55

[29]Che G, Chen J, Liu L, Wang Y, Li L, Qin Y, Zhou Q. Transfection of nm23-H1 increased expression of beta-Catenin, E-Cadherin and TIMP-1 and decreased the expression of MMP-2, CD44v6 and VEGF and inhibited the metastaic protential of human non-small cell lung cancer cell line L9981. Neoplasma, 2006, 53(6): 530–537

[30]Ren S-Y(任世英), Xiao T(肖天). Cloning and analyse of nucleoside diphosphate kinase gene sequence from marine polyphosphate-accumulating bacterium, Halomonas YSR-3. Marine Sci (海洋科学), 2008, 32(9): 61–63 (in Chinese with English abstract)

[31]Chen Z, Gallie D R. Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol, 2006, 142: 775–787

[32]Asada K. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Physiol Plant, 1992, 85: 235–241

[33]Cheng Z-S(成子硕), Lan T(兰婷), Li D(李迪), Yang H-L(杨海灵), Zeng Q-Y(曾庆银). Molecular characterizations of two dehydroascorbate reductases from Selaginella moellendorffi. Chin J Biotech (生物工程学报), 2011, 27(1): 76–84 (in Chinese with English abstract)

[34]Sigla-Pareek S L, Reddy M K, Sopory S K. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA, 2003, 100: 14672–14677

[35]Singla-Pareek S L, Yadav S K, Pareek A, Reddy M K, Sopory S K. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res, 2008, 17: 171–180

[36]Thornalley P J. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J, 1990, 269: 1–11

[37]Finkelstein J D. Methionine metabolism in mammals. Nutr Biochem, 1990, 1: 228–237

[38]Fan J-P(樊金萍), Bai X(柏锡), Li Y(李勇), Ji W(纪巍), Wang X(王希), Cai H(才华), Zhu Y-M(朱延明). Cloning and function analysis of gene SAMS from Glycine soja. Acta Agron Sin (作物学报), 2008, 34(9): 1581–1587 (in Chinese with English abstract)

[39]Wang Y-X(王亦学), Sun Y(孙毅), Tian Y-C(田颖川), Wu J-H(吴家和). Cloning and expressing of putative enolase gene from cotton (Gossypium hirsutum L.). Cotton Sci (棉花学报), 2009, 21(4): 275–278 (in Chinese with English abstract)

[40]Chastain C J, Chollet R. Regulation of pyruvate, orthophosphate Dikinase by ADP-Pi-dependent reversible phosphorylation in C3 and C4 plants. Plant Physiol Biochem, 2003, 41: 523–532
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
[3] 闫岩, 张钰石, 刘础荣, 任丹阳, 刘洪润, 刘雪晴, 张明才, 李召虎. 冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率[J]. 作物学报, 2022, 48(2): 423-436.
[4] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应[J]. 作物学报, 2021, 47(3): 507-519.
[5] 徐田军, 吕天放, 赵久然, 王荣焕, 张勇, 蔡万涛, 刘月娥, 刘秀芝, 陈传永, 邢锦丰, 王元东, 刘春阁. 不同播期条件下黄淮海区主推夏播玉米品种籽粒灌浆特性[J]. 作物学报, 2021, 47(3): 566-574.
[6] 王荣焕, 徐田军, 陈传永, 王元东, 吕天放, 刘月娥, 蔡万涛, 刘秀芝, 赵久然. 不同熟期类型玉米品种籽粒灌浆和脱水特性[J]. 作物学报, 2021, 47(1): 149-158.
[7] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[8] 纪龙,申红芳,徐春春,陈中督,方福平. 基于非线性主成分分析的绿色超级稻品种综合评价[J]. 作物学报, 2019, 45(7): 982-992.
[9] 柏延文,杨永红,朱亚利,李红杰,薛吉全,张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868-1879.
[10] 许阳东,朱宽宇,章星传,王志琴,杨建昌. 绿色超级稻品种的农艺与生理性状分析[J]. 作物学报, 2019, 45(1): 70-80.
[11] 万泽花,任佰朝,赵斌,刘鹏,董树亭,张吉旺. 不同熟期夏玉米品种籽粒灌浆与脱水特性及其密度效应[J]. 作物学报, 2018, 44(10): 1517-1527.
[12] 李赞堂, 王士银, 姜雯宇, 张帅, 张少斌, 徐江. 穗分化期外施24-表油菜素内酯(EBR)促进水稻源、库及籽粒灌浆的生理机制[J]. 作物学报, 2018, 44(04): 581-590.
[13] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响[J]. 作物学报, 2018, 44(04): 554-568.
[14] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性[J]. 作物学报, 2018, 44(03): 414-422.
[15] 高佳,史建国,董树亭,刘鹏,赵斌,张吉旺*. 夏玉米籽粒胚乳细胞增殖及产量对不同光照的响应[J]. 作物学报, 2017, 43(10): 1548-1558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!