欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (04): 581-590.doi: 10.3724/SP.J.1006.2018.00581

• 耕作栽培·生理生化 • 上一篇    下一篇

穗分化期外施24-表油菜素内酯(EBR)促进水稻源、库及籽粒灌浆的生理机制

李赞堂1(), 王士银1, 姜雯宇1,2, 张帅1,2, 张少斌2, 徐江1,*()   

  1. 1 中国农业科学院作物科学研究所, 北京 100081
    2 沈阳农业大学生物科学技术学院, 辽宁沈阳 110866
  • 收稿日期:2017-06-09 接受日期:2018-01-08 出版日期:2018-02-07 网络出版日期:2018-02-07
  • 通讯作者: 徐江
  • 作者简介:

    lizantang@163.com

  • 基金资助:
    本研究由国家自然科学基金项目(31571589, 31071351), 国家重点基础研究发展计划(973计划)项目(2015CB150401)和中国农业科学院创新工程项目资助

Physiological Mechanisms of Promoting Source, Sink, and Grain Filling by 24-Epibrassinolide (EBR) Applied at Panicle Initiation Stage of Rice

Zan-Tang LI1(), Shi-Yin WANG1, Wen-Yu JIANG1,2, Shuai ZHANG1,2, Shao-Bin ZHANG2, Jiang XU1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Received:2017-06-09 Accepted:2018-01-08 Published:2018-02-07 Published online:2018-02-07
  • Contact: Jiang XU
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (31571589, 31071351), the National Basic Research Program of China (973 Program, grant No. 2015CB150401), and the Innovation Program of Chinese Academy of Agricultural Sciences (CAAS).

摘要:

水稻产量高低与其籽粒灌浆能力的强弱密切相关, 而籽粒灌浆能力的强弱受源和库的影响。已有研究表明, 油菜素甾醇类化合物(brassinosteroids, BRs)对水稻生长发育和产量具有正向调节作用。为进一步阐明BRs调控水稻源强、库容和库活性的生理机制及其相互关系, 本研究在大田条件下, 以粳稻日本晴为试验材料, 在穗分化期喷施24-表油菜素内酯(24-epibrassinolid, EBR), 分析其相关影响。首先, 两种不同浓度的EBR处理通过促进光合产物的合成及其在灌浆过程中的转运提高了水稻的源强。其次, 两种浓度EBR处理均增大了水稻的库容, 但两种处理的影响方式存在差异, 低浓度处理(T1) 显著提高水稻籽粒的千粒重, 对穗粒数的影响较小; 高浓度处理(T2)则显著增加单位面积的穗数和穗粒数, 对千粒重的影响较小。再次, 两处理同时提高了水稻强、弱势粒的蔗糖裂解酶活性, 尤其对弱势粒酸性转化酶(acid invertase, AI)活性的影响较大, 有助于光合产物向弱势粒分配, 进而促进弱势粒淀粉合成和籽粒灌浆, 提高其充实度和结实率。最后, 两处理均显著增加了水稻的产量, T1和T2分别平均增加5.6%和15.2%, T2比T1平均增产9.1%。因此, 与低浓度EBR处理下的千粒重增大相比, 高浓度处理下穗粒数的增加对产量影响更大。综上所述, 穗分化期进行EBR处理能够增大水稻的源强、库容和库活性, 进而促进光合物质的积累和分配, 有利于籽粒灌浆; 在光合物质供应充足和库活性显著提高的基础上, 库容的增大有助于产量的明显提高。

关键词: 水稻, 源强, 库容, 库活性, 籽粒灌浆

Abstract:

Grain weight and yield of rice are clearly related to grain filling ability, which is strongly affected by source and sink. Studies of Brassinosteroids’ effects on growth, development and yield of rice have been reported. In order to further set forth the relative physiological characteristics and relationship, we set up field experiments to study the impacts of 24-epibrassinolid (EBR) sprayed at the panicle initiation stage of Nipponbare on source capacity, sink size, sink activity and grain filling. Both T1 (0.2 µmol L-1 EBR) and T2 (1 µmol L-1 EBR) treatments increased the source capacity by improving the accumulation of photosynthate and its translocation during grain filling stage. Both EBR treatments increased the sink size through different manners: T1 treatment increased the grain weight markedly but had little influence on panicle and grain amounts; and T2 treatment significantly increased number of panicles and grains per panicle whereas had little influence on grain weight. Two EBR treatments enhanced the sucrose lyase activity in both superior and inferior grains, especially for the activity of Acid Invertase (AI) in inferior grains. AI accelerated the transportation of photosynthate and the synthesis of starch in inferior grains. T1 and T2 significantly increased rice yield by an average of 5.6% and 15.2%, respectively, with 9.1% more in T2 than in T1. Therefore, compared with grain weight enhancement in T1, the increase of panicle and grain numbers in T2 had greater impact on rice yield. In summary, two EBR treatments at panicle differentiation stage can increase the source capacity, sink size and sink activity of rice, and then promote photosynthates accumulation and distribution, which is beneficial to grain filling. On the basis of sufficient photosynthates and strong sink activity, sink size enlargement can significantly increase the rice yield.

Key words: rice, source capacity, sink size, sink activity, grain filling

图1

初花期和收获期地上部分生物量 A: 2013年地上部分生物量; B: 2014年地上部分生物量。FS: 初花期; HS: 收获期。*和**表示在0.05和0.01水平上处理与对照相比有显著性差异; T0、T1、T2分别表示0、0.2、1.0 µmol L-1的EBR处理。"

图2

叶片和茎鞘中的非结构性碳水化合物(NSC)含量 A: 初花期的NSC含量; B: 收获期的NSC含量。*和**表示在0.05和0.01水平上处理与对照相比有显著性差异; T0、T1、T2分别表示0、0.2、1.0 µmol L-1的EBR处理。"

图3

灌浆期叶片蔗糖磷酸合酶(SPS)活性及其蔗糖含量*和**分别代表T1在0.05和0.01水平上的显著性; +和++分别代表T2在0.05和0.01水平上的显著性。T0、T1、T2分别表示0、0.2、1.0 µmol L-1的EBR处理。"

表1

2013年和2014年不同处理库容变化"

年份
Year
处理
Treatment
单位面积穗数
Panicles per m2
每穗粒数
Grains
per panicle
单位面积粒数
Grains per m2 (×103)
千粒重
1000-grain weight
(g)
产量
Grain yield
(t hm-2)
2013 T0 311.5 bA 96.5 bA 30.0 bB 21.8 bA 7.49 bB
T1 313.0 bA 102.1 abA 32.5 bB 23.8 aA 8.11 bAB
T2 341.7 aA 112.5 aA 38.4 aA 23.0 abA 8.80 aA
2014 T0 311.1 bB 94.4 bA 29.4 bB 23.7 bA 7.54 cB
T1 310.9 bB 99.7 abA 31.0 bB 24.7 aA 7.76 bB
T2 358.4 aA 104.0 aA 37.3 aA 23. 8 bA 8.51 aA
年份Year (Y) 0.70 1.80 3.97 9.79** 0.95
处理Treatment (T) 20.10** 5.86* 75.80** 5.59* 10.99**
互作Y×T 1.10 0.42 0.20 0.93 0.39

图4

灌浆期强、弱势粒中蔗糖裂解酶的活性 A: 强势粒中的SS(蔗糖合酶)活性; B: 弱势粒中的SS活性; C: 强势粒中的AI (酸性转化酶)活性; D: 弱势粒中的AI活性。*和**分别代表T1在0.05和0.01水平上的显著性, +和++分别代表T2在0.05和0.01水平上的显著性。T0、T1、T2分别表示0、0.2、1.0 µmol L-1的EBR处理。"

图5

灌浆期强、弱势粒中NSC积累 A: 强势粒中的NSC积累; B: 弱势粒中的NSC积累。*和**表示在0.05和0.01水平上处理与对照相比有显著差异。T0、T1、T2分别表示0、0.2、1.0 µmol L-1的EBR处理。"

图6

灌浆期强、弱势粒中淀粉积累 A: 强势粒中的淀粉积累; B: 弱势粒中的淀粉积累。*和**表示在0.05和0.01水平上处理与对照相比有显著差异。T0、T1、T2分别表示0、0.2、1.0 µmol L-1的EBR处理。"

图7

收获期强、弱势粒糙米重和结实率 A: 糙米重; B: 结实率。*和**表示在0.05和0.01水平上处理与对照相比有显著差异。T0、T1、T2分别表示0、0.2、1.0 µmol L-1的EBR处理。"

[1] Preiss J.The Biochemistry of Plants Vol. 3. London: Academic Press, 1980. pp 371-423
[2] Kato T, Takeda K.Associations among characters related to yield sink capacity in space-planted rice.Crop Sci, 1996, 36: 1135-1139
[3] 黄升谋. 水稻强、弱势粒结实生理及其调控途径研究. 湖南农业大学博士学位论文,湖南长沙, 2003
Huang S M.Setting Physiology and Regulation Measure of the Superior and Inferior Grains of Rice. PhD Dissertation of Hunan Agricultural University, Changsha,China, 2003 (in Chinese with English abstract)
[4] Ohsumi A, Takai T, Ida M, Yamamoto T, Arai-Sanoh Y, Yano M, Ando T, Kondo M.Evaluation of yield performance in rice near-isogenic lines with increased spikelet number.Field Crops Res, 2011, 120: 68-75
[5] Song X F, Agata W, Kawamitsu Y.Studies on dry matter and grain production of F1 hybrid rice in China: II. Characteristic of grain production.Jpn J Crop Sci, 1990, 59: 19-28
[6] Ho L C.Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength.Annu Rev Plant Biol, 2003, 39: 355-378
[7] 梁建生, 曹显祖, 徐生, 朱庆森, 宋平. 水稻籽粒库强与其淀粉积累之间关系的研究. 作物学报, 1994, 20: 685-691
Liang J S, Cao X Z, Xu S, Zhu Q S, Song P.Studies on the relationship between the grain sink strength and it’s starch accumulation in rice (O. sativa). Acta Agron Sin, 1994, 20: 685-691 (in Chinese with English abstract)
[8] 杨建昌. 水稻弱势粒灌浆机理与调控途径. 作物学报, 2010, 36: 2011-2019
Yang J C.Mechanism and regulation in the filling of inferior spikelets of rice.Acta Agron Sin, 2010, 36: 2011-2019 (in Chinese with English abstract)
[9] Mccormick A J, Cramer M D, Watt D A.Sink strength regulates photosynthesis in sugarcane.New Phytol, 2006, 171: 759-770
[10] Sheehy J E, Mja D, Mitchell P L.Spikelet numbers, sink size and potential yield in rice.Field Crops Res, 2001, 71: 77-85
[11] 杨卫兵, 王振林, 尹燕枰, 李文阳, 李勇, 陈晓光, 王平, 陈二影, 郭俊祥, 蔡铁, 倪英丽. 外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响. 中国农业科学, 2011, 44: 2673-2682
Yang W B, Wang Z L, Yin Y P, Li W Y, Li Y, Chen X G, Wang P, Chen E Y, Guo J X, Cai T, Ni Y L.Effects of spraying exogenous ABA or GA on the endogenous hormones concentration and filling of wheat grains.Sci Agric Sin, 2011, 44: 2673-2682 (in Chinese with English abstract)
[12] Zhao J, Wu C, Yuan S, Yin L, Sun W, Zhao Q, Zhao B, Li X. Kinase activity of OsBRI1 is essential for brassinosteroids to regulate rice growth and development. Plant Sci Int J Exp Plant Biol, 2013, 199-200: 113-120
[13] Wu C Y, Trieu A, Radhakrishnan P, Kwok S F, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann K A, Pennell R I.Brassinosteroids regulate grain filling in rice.Plant Cell, 2008, 20: 2130-2145
[14] Khripach V, Zhabinskii V, Groot A D.Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century.Ann Bot-London, 2000, 86: 441-447
[15] Swamy K N, Rao S S R. Effect of 24-epibrassinolide on growth, photosynthesis, and essential oil content of Pelargonium graveolens ( L.) Herit. Russ J Plant Physiol, 2009, 56: 616-620
[16] 翁晓燕, 陶月良. 表油菜素内酯对水稻产量和光合特性的影响. 浙江大学学报(农业与生命科学版), 1995, 21(1): 51-54
Weng X Y, Tao Y L.Effect of epibrassinolid on grain yield and photosynthesis of rice.J Zhejiang Agric Univ(Agric & Life Sci), 1995, 21(1): 51-54 (in Chinese with English abstract)
[17] 王士银, 陈冉冉, 石庆华, 张桦, 赵明, 徐江. 开花期外施表油菜素内酯(epi-BR)对水稻的影响. 作物杂志, 2012, (04): 83-86
Wang S Y, Chen R R, Shi Q H, Zhang H, Zhao M, Xu J.The effects of epi-BR treated in primary flowering stage on rice.Crops, 2012, (04): 83-86 (in Chinese with English abstract)
[18] 刘海英, 郭天财, 朱云集, 王晨阳, 康国章. 开花期喷施表油菜素内酯对豫麦49蔗糖代谢和产量的影响. 麦类作物学报, 2006, 26(1): 77-81
Liu H Y, Guo T C, Zhu Y J, Wang C Y, Kang G Z.Effect of epibraassinolide sprayed at anthesis on sucrose metabolism and yield of Yumai 49.J Triticeae Crops, 2006, 26(1): 77-81 (in Chinese with English abstract)
[19] Yoshida S, Forno D, Cock J, Gomez K.Determination of sugar and starch in plant tissue. In: Yoshida S ed. Laboratory Manual for Physiological Studies of Rice. Philippines: International Rice Research Institute, 1976. pp 46-49
[20] 张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社, 2003. pp 128-129
Zhang Z L, Qu W J.Experimental Guidance in Plant Physiology, 3rd edn. Beijing: Higher Education Press, 2003. pp 128-129 (in Chinese)
[21] Yemm E W, Willis A J.The estimation of carbohydrates in plant extracts by anthrone.Biochem J, 1954, 57: 508-514
[22] Hubbard N L, Huber S C, Pharr D M.Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon ( Cucumis melo L.) fruits.Plant Physiol, 1989, 91: 1527-1534
[23] Miron D, Schaffer A A.Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating lycopersicon hirsutum Humb. and Bonpl.Plant Physiol, 1991, 95: 623-627
[24] Zhu Y J, Komor E, Moore P H.Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase.Plant Physiol, 1997, 115: 609-616
[25] Pheloung P C, Siddique K.Contribution of stem dry-matter to grain-yield in wheat cultivars.Aust J Plant Physiol, 1991, 18: 53-64
[26] Schnyder H.The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling—a review.New Phytol, 1993, 123: 233-245
[27] Fujii S, Hirai K, Saka H.Growth-regulating action of brassinolide in rice plants. ACS Symposium Series, 1991. pp 306-311
[28] Yu J Q, Huang L F, Hu W H, Zhou Y H, Mao W H, Ye S F, Nogue´s S.A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot, 2004, 55: 1135
[29] Yang J, Zhang J.Grain filling of cereals under soil drying.New Phytol, 2006, 169: 223-236
[30] 王志琴, 杨建昌. 水稻抽穗期茎鞘中储存的可用性糖与籽粒充实的关系. 江苏农业学报, 1997, 18(04): 13-17
Wang Z Q, Yang J C.Relation of the usable carbohydrate reserver in stems and sheaths at heading stage with grain-filling in rice plants.J Jiangsu Agric Coll, 1997, 18(04): 13-17 (in Chinese with English abstract)
[31] Yang J C, Zhang W H, Wang Z Q, Liu L J, Zhu Q S.Source-sink characteristics and the translocation of assimilates in new plant type and intersubspecific hybrid rice.J Integr Agric, 2002, 1: 155-162
[32] Fu J, Huang Z, Wang Z, Yang J, Zhang J.Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice.Field Crops Res, 2011, 123: 170-182
[33] Farrar J, Pollock C, Gallagher J.Sucrose and the integration of metabolism in vascular plants.Plant Sci, 2000, 154: 1-11
[34] Huber S C, Huber J L.Role and regulation of sucrose-phosphate synthase in higher plants.Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 431-444
[35] Jing F U, Yang J C, Jing F U, Yang J C.Research advances in high-yielding cultivation and physiology of super rice.Rice Sci, 2012, 19: 177-184
[36] Morinaka Y, Matsuoka M.Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice.Plant Physiol, 2006, 141: 924-931
[37] Kato T.Effect of spikelet removal on the grain filling of Akenohoshi, a rice cultivar with numerous spikelets in a panicle. J Agric Sci, 2004, 142: 177-181
[38] Sheehy J E, Mja D, Mitchell P L.Spikelet numbers, sink size and potential yield in rice.Field Crops Res, 2001, 71: 77-85
[39] Sadras V O, Slafer G A.Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities.Field Crops Res, 2012, 127: 215-224
[40] Fischer R A.Understanding the physiological basis of yield potential in wheat.J Agric Sci, 2007, 145: 99-113
[41] Perez C M, Perdon A A, Resurreccion A P, Villareal R M, Juliano B O.Enzymes of carbohydrate metabolism in the developing rice grain.Plant Physiol, 1975, 56: 579
[42] Jiang Y P, Cheng F, Zhou Y H, Xia X J, Mao W H, Shi K, Chen Z X, Yu J Q.Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus.J Biomed Biotechnol, 2012, 13: 811-823
[43] Kato T, Takeda K.Associations among characters related to yield sink capacity in space-planted rice.Crop Sci, 1996, 36: 1135-1139
[44] Yang J, Zhang J.Grain-filling problem in ‘super’ rice. J Exp Bot, 2010, 61: 1-5
[45] Estruch J J, Beltrán J P.Changes in invertase activities precede ovary growth induced by gibberellic acid in.Physiol Plant, 1991, 81: 319-326
[46] Xu D P, Sung S J, Black C C.Sucrose metabolism in lima bean seeds.Plant Physiol, 1989, 89: 1106-1116
[47] 杨建昌, 王志琴, 朱庆森. 水稻产量源库关系的研究. 江苏农业学报, 1993, 14(3): 47-53
Yang J C, Wang Z Q, Zhu Q S.Studies of yield source and sink relationships in rice.J Jiangsu Agric Coll, 1993, 14(3): 47-53 (in Chinese with English abstract)
[48] 王志琴, 杨建昌, 朱庆森, 张祖建, 郎有忠, 王学明. 亚种间杂交稻籽粒充实不良的原因探讨. 作物学报, 1998, 24: 782-787
Wang Z Q, Yang J C, Zhu Q S, Zhang Z J, Lang Y P, Wang X M.Reasons for poor grain plumpness in intersubspecific hybrid rice.Acta Agron Sin, 1998, 24: 782-787 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!