欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2178-2184.doi: 10.3724/SP.J.1006.2012.02178

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

兼抗全蚀病和白粉病小麦新种质的创制与鉴定

祝秀亮1,李钊1,杜丽璞1,徐惠君1,杨丽华1,2,庄洪涛1,马翎健2,张增艳1,*   

  1. 1中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部作物遗传育种重点开放实验室, 北京 100081; 2西北农林科技大学农学院, 陕西杨凌 712100
  • 收稿日期:2012-04-25 修回日期:2012-07-05 出版日期:2012-12-12 网络出版日期:2012-09-10
  • 通讯作者: 张增艳, E-mail: zhangzy@mail.caas.net.cn, Tel: 010-82108781
  • 基金资助:

    本研究由国家转基因生物新品种培育重大科技专项(2011ZX08002-001和2009ZX08002-006B)资助。

Development and Characterization of Wheat Lines with Resistance to Take-All and Powdery Mildew Diseases

ZHU Xiu-Liang1,LI Zhao1,DU Li-Pu1,XU Hui-Jun1,YANG Li-Hua1,2,ZHUANG Hong-Tao1,MA Ling-Jian2,ZHANG Zeng-Yan1,*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Genetic and Breeding of Agriculture Ministry / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Agronomy, Northwest A&F University, Yangling 712100, China
  • Received:2012-04-25 Revised:2012-07-05 Published:2012-12-12 Published online:2012-09-10
  • Contact: 张增艳, E-mail: zhangzy@mail.caas.net.cn, Tel: 010-82108781

摘要:

TaLTP5是从小麦中分离到的一个脂质转移蛋白编码基因。利用基因枪介导法将TaLTP5表达载体pA25-TaLTP5转入抗白粉病的小麦品种扬麦18 (含抗白粉病基因Pm21)中, 旨在选育兼抗全蚀病和白粉病的小麦新种质。对转基因小麦T0~T3代植株中引入TaLTP5基因进行分子检测和抗病性鉴定。PCR检测、Southern杂交分析结果表明, 外源TaLTP5基因已转入、整合到3个转基因小麦株系的基因组中, 并能稳定遗传; 荧光定量RT-PCR的分析以及全蚀病菌的接种与鉴定结果表明, 与受体小麦扬麦18相比, 这3个转基因小麦株系中TaLTP5表达量显著提高, 其对全蚀病的抗性也明显增强。对3个转基因株系的Pm21分子标记和白粉病抗性鉴定表明, 外源TaLTP5基因的导入没有影响受体小麦对白粉病抗性, 说明这些转基因株系为兼抗全蚀病和白粉病小麦新种质。

关键词: 小麦脂质转移蛋白, TaLTP5, 转基因小麦, 全蚀病, 白粉病, 抗性

Abstract:

“Take-all”, primarily caused by Gaeumannomyces graminis var. tritici (Ggt), and powdery mildew, mainly caused by Blumeria graminis f. sp. tritici (Bgt), are important diseases of wheat (Triticum aestivum L.) worldwide. The wheat cultivar Yangmai 18 carrying a powdery mildewresistance gene Pm21, shows broad-spectrum resistance to powdery mildew. We have isolated a lipid transfer protein gene TaLTP5 from wheat. To study the role of TaLTP5 in wheat defense responses to the major pathogens of take-all, we introduced this gene intowheat cultivar Yangmai 18via bombarding the particle containing the TaLTP5 expressing vector pA25-TaLTP5. The TaLTP5 transgenic wheat plants from T0 to T3 generations were subjected to PCR, Southern blot, RT-PCR, and Q-RT-PCR analyses. We also evaluated the disease resistances of these TaLTP5 transgenic plants against inoculating Ggt and Bgt. The PCR and Southern blotting results showed that the alien TaLTP5 was transferred and integrated into the genomes of three transgenic wheat lines, and inherited stably in the transgenic wheat lines. The RT-PCR and Q-RT-PCR results indicated that the introduced TaLTP5 was over-expressed in transgenic wheat lines, which showed significantly-enhanced resistance to take-all, suggesting that TaLTP5 gene is involved in defense response to Ggt infection. In addition, the resistance of transgenic lines to powdery mildew was not influenced bythe introduced gene TaLTP5. Thus, TaLTP5 transgenic wheat Yangmai 18 exhibits resistance to both “Take-all” and powdery mildew.

Key words: Wheat lipid transfer protein, TaLTP5, Transgenic wheat, Take-all, Powdery mildew, Resistance

[1]Dong J-L(董建力), Hui H-X(惠红霞), Huang L-L(黄丽丽), Wang J-D(王敬东), Zhu Y-X(朱永兴), Chen X(陈孝), Ye X-G(叶兴国). Optimization of identification technique and germplasm screening of resistance to take-all in wheat. J Northwest A&F Univ (Nat Sci Edn) (西北农林科技大学学报•自然科学版), 2009, 37(3): 159–162 (in Chinese with English abstract)



[2]Huo Z-G(霍治国), Chen L(陈林), Liu W-G(刘万才), Xue C-Y(薛昌颖), Zhao S-J(赵圣菊), Zhuang L-W(庄立伟). Climatic zonation of wheat powdery mildew in china. Acta Ecol Sin (生态学报), 2002, 22(11): 1873-1881 (in Chinese with English abstract)



[3]Zhang B-Q(张伯桥). Utilizing rolling convergent backcross method to breed new wheat variety Yangmai 18 with powdery mildew resistance. Chin Agric Sci Bull (中国农学通报), 2009, 25(13): 74–77 (in Chinese with English abstract)



[4]Van Loon L C, van Strien E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol, 1999, 55: 85–97



[5]Kader J C. Lipid-transfer protein in pants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 627–654



[6]Maldonado A M, Doerner P, Dixon R A, Lamb C J, Cameron R K. A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature, 2002, 419: 399–403



[7]Roy-Barman S, Sautter C, Chattoo B B. Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Res, 2006, 15: 435–446



[8]Sujon S, Young J K, Ki D K, Byung K H, Sung H O, Jeong S S. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Rep, 2009, 28: 419–427



[9]King G J, Turner V A, Hussey C E, Wurtele E S, Lee S M. Isolation and characterization of a tomato cDNA clone which codes for a salt-induced protein. Plant Mol Biol, 1988, 10: 401–412



[10]White A J, Dunn M A, Brown K, Hughes M A. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot, 1994, 45: 1885–1892



[11]Sterk P, Booij H, Schellkens G A, van Kammen A, de Vries S C. Cell-specific expression of the carrot EP-2 lipid transfer protein gene. Plant Cell, 1991, 3: 907–921



[12]Kirubakaran S I, Begum S M, Ulaganathan K, Sakthivel K. Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol Biochem, 2008, 46: 918–927



[13]Sun J Y, Gaudet D A, Lu Z X, Frick M, Puchalski B, Laroche A. Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Mol Plant-Microbe Interact, 2008, 21: 346–360



[14]Xu H-J(徐惠君), Pang J-L(庞俊兰), Ye X-G(叶兴国), Du L-P(杜丽璞), Li L-C(李连城), Xin Z-Y(辛志勇), Ma Y-Z(马有志), Chen J-P(陈剑平), Chen J(陈炯), Cheng S-H(程顺和), Wu H-Y(吴宏亚). Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment. Acta Agron Sin (作物学报), 2001, 27(6): 684−689 (in Chinese with English abstract)



[15]Sharp P J, Kries M, Shewry P R, Gale M D. Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet, 1988, 75: 286–290



[16]Cao A Z, Wang X E, Chen Y P, Zou X W, Chen P D. A sequence-specific PCR marker linked with Pm21 distinguishes chromosomes 6AS, 6BS, 6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breed, 2006, 125: 201−205



[17]Zhang Z-Y(张增艳), Xu J-S(许景升), Liu Y-G(刘耀光), Wang X-P(王晓萍), Lin Z-S(林志珊), Xin Z-Y(辛志勇). Isolation of resistance gene candidates by a resistance gene analog of Thinopymm intermedium and pooled-PCR. Acta Agron Sin (作物学报), 2004, 30(3): 189–195 (in Chinese with English abstract)



[18]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402−408



[19]Liu Z Y, Sun Q X, Ni Z F, Yang T M. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breeding, 1999, 118: 215−219



[20]Zhu X L, Li Z, Xu H J, Zhou M P, Du L P, Zhang Z Y. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Funct Integr Genomic, DOI: 10.1007/s10142-012-0286-z (online)



[21]Cook R J, Take-all of wheat. Physiol Mol Plant Pathol, 2003, 62: 73–86

[1] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[2] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[3] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[4] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[5] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[6] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[7] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[8] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[9] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[10] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[11] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[12] 陈同睿, 罗艳君, 赵潘婷, 贾海燕, 马正强. 过表达TaJRL53基因提高了小麦赤霉病抗性[J]. 作物学报, 2021, 47(1): 19-29.
[13] 崔静, 王志城, 张新雨, 柯会锋, 吴立强, 王省芬, 张桂寅, 马峙英, 张艳. 棉花GbSTK基因调控开花和黄萎病抗性的功能研究[J]. 作物学报, 2021, 47(1): 30-41.
[14] 闻竞, 沈彦岐, 韩四平, 邢跃先, 张叶, 王梓钰, 李世界, 杨小红, 郝东云, 张艳. 玉米拟轮枝镰孢菌穗腐病抗性基因的挖掘[J]. 作物学报, 2020, 46(9): 1303-1311.
[15] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!