欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 2024-2033.doi: 10.3724/SP.J.1006.2012.02024

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗ATP柠檬酸裂解酶基因的克隆与表达分析

李长宁1,2,农倩1,谭秦亮1,SRIVASTAVA Manoj Kumar 2,杨丽涛1,2,李杨瑞1,2,*   

  1. 1 广西大学农学院 / 亚热带农业生物资源保护与利用国家重点实验室,广西南宁530005;2中国农业科学院甘蔗研究中心 / 农业部广西甘蔗生物技术与遗传改良重点实验室 / 广西作物遗传改良生物技术重点实验室 / 广西甘蔗遗传改良重点实验室,广西南宁530007
  • 收稿日期:2012-04-27 修回日期:2012-07-05 出版日期:2012-11-12 网络出版日期:2012-09-10
  • 通讯作者: 李杨瑞, E-mail: lyr@gxaas.net
  • 基金资助:

    本研究由广西自然科学基金创新团队项目(2011GXNSFF018002), 国家国际合作项目(2008DFA30600, 2009DFA30820), 广西科技攻关项目(桂科能0815011, 桂科产1123008-1)和广西农业科学院创新团队项目(桂农科2011YT01)资助。

Cloning and Expression Analysis of ATP-Citrate Lyase Genes from Sugarcane

LI Chang-Ning1,2,NONG Qian1,TAN Qin-Liang1,SRIVASTAVA Manoj Kumar2,YANG Li-Tao1,2,LI Yang-Rui1,2,*   

  1. 1 Agricultural College / State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530005, China;
    2 Sugarcane Research Center, Chinese Academy of Agricultural Sciences / Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture / Guangxi Crop Genetic Improvement and Biotechnology Laboratory / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
  • Received:2012-04-27 Revised:2012-07-05 Published:2012-11-12 Published online:2012-09-10
  • Contact: 李杨瑞, E-mail: lyr@gxaas.net

摘要:

ATP柠檬酸裂解酶(ACL)为细胞质中乙酰辅酶A合成途径的关键调控酶,在生物体正常生长发育中扮演着重要角色。本研究通过Race和电子克隆技术获得编码甘蔗ACL蛋白2个亚基的基因SoACLA-1SoACLB-1,其编码框长度分别为1 272 bp和1 827 bp,编码423个和608个氨基酸,推测的氨基酸序列与其他物种具有高度相似性,都优先与禾本科植物聚于同一进化分支。2个基因在ATP-grasp功能域、柠檬酸结合位点、组氨酸磷酸化位点和ATP结合、CoA结合、磷酸化区域等,序列高度保守。实时荧光定量PCR结果表明,2个基因均受外源ABA、水分胁迫、水分胁迫加ABA处理诱导表达,且叶中表达量显著高于根系,其中又以水分胁迫处理下的表达量最高,2个基因表现出协同表达模式。SoACLA-1SoACLB-1的表达与ABA、ROS含量具有相关性,说明它们可能参与了ABA调控的植物对逆境胁迫反应的代谢过程。

关键词: 甘蔗, ATP柠檬酸裂解酶, 克隆, 脱落酸, 表达

Abstract:

Acetyl-CoA plays an important role in the cytosol of plant cells for the synthesis of a diverse set of phytochemicals, and the cytosolic acetyl-CoA is from the reaction of citrate and CoA catalyzed by ATP-citrate lyase (ACL) coupled with the hydrolysis of ATP. In this research, two genes encoding two distinct subunits of ACL were identified from sugarcane (Saccharum officinarum) by RACE and insilico cloning technology, named SoACLA-1 and SoACLB-1, which contained 1 272 and 1 828 bp open reading frames, and encoded 423 and 608 amino acids, respectively. Sequence analysis indicated that both amino acids sequences showed high homology with ACLs from other species and were close clustered with ACLs from gramineous plants in the phylogenetic tree constructed by MEGA5.0 software using a Neighborhood-Joining bootstrap method. Both sequences showed high conservation in the ATP-grasp domain, citrate binding site, active binding site of histidine phosphorylated by ATP, potential ATP-binding, phosphorylated site and CoA-binding site when compared with ACLs from other species. Quantitative real-time PCR results indicated that SoACLA-1 and SoACLB-1 were both induced by the treatment of control+ABA, water stress, water stress +ABA, and their expression levels were higher in leaves than in roots, with the highest express level in water stress treatment, SoACLA-1 and SoACLB-1 showed a synergetic expression pattern. The expression of SoACLA-1 and SoACLB-1 was close correlated with the ABA and ROS contents, indicating that ACL maybe involved in stress responsive metabolic process triggered by ABA in plants.

Key words: 甘蔗, ATP柠檬酸裂解酶, 克隆, 脱落酸, 表达

[1]Nikolau B J, Ohlrogge J B, Wurtele E S. Plant biotincontaining carboxylases. Arch Biochem Biophys, 2003, 414: 211-222



[2]Falk K L, Vogel C, Textor S, Bartram S, Hick A, Pickett J A, Gershenzon J. Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa. Phytochemistry, 2004, 65: 1073-1084



[3]Klumppa S, Bechmanna G, Mäurera A, Selkea D, Krieglsteinb J. ATP-citrate lyase as a substrate of protein histidine phosphatase in vertebrates. Biochem Biophys Res Commun, 2003, 306: 110-115



[4]Takahashi H, McCaffery J M, Irizarry R A, Boeke J D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell, 2006, 23: 207-217



[5]Wellen K E, Hatzivassiliou G, Sachdeva U M, Bui T V, Cross J R, Thompson C B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 2009, 324: 1076-1080



[6]Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K. hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell, 2002, 14: 1017-1031



[7]Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta, 2003, 1632: 1-15



[8]Shalit M, Guterman I, Volpin H, Bar E, Tamari T, Menda N, Adam Z, Zamir D, Vainstein A, Weiss D, Pichersky E, Lewinsohn E. Volatile ester formation in roses: identification of an acetyl-coenzyme A geraniol/citronellol acetyltransferase in developing rose petals. Plant Physiol, 2003, 131: 1868-1876



[9]Son H, Lee J, Park A R, Lee Y W. ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genet Biol, 2011, 48: 408-417



[10]Schwender J, Ohlrogge J B. Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol, 2002, 130: 347-361



[11]Schwender J, Ohlrogge J B, Shachar-Hill Y. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem, 2003, 278: 29442-29453



[12]Hynes M J, Murray S L. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryotic cell, 2010, 9: 1039-1048



[13]Fatland B L, Ke J, Anderson M D, Mentzen W I, Cui L W, Allred C C, Johnston J L, Nikolau B J, Wurtele E S. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol, 2002, 130: 740-756



[14]Fatland B L, Nikolau B J, Wurtele E S. Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. Plant Cell, 2005, 17: 182-203



[15]Fu S-X(付三雄), Qi C-K(戚存扣). Identification of genes differentially expressed in seeds of Brassica napus planted in Nanjing and Lhasa by Arabidopsis microarray. Chin Bull Bot (植物学报), 2009, 44(2): 178-184 (in Chinese with English abstract)



[16]Wang S-Y(王树源), Chen J-M(陈健美), Qi W-C(戚维聪), Tian L-L(田琳琳), Guan R-Z(管荣展). Correlation between ATP-citrate lyase activity and seed oil content of canola lines. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31: 279-284 (in Chinese with English abstract)



[17]Zhao J(赵检), Wang X-Y(王旭颖), Wang M-L(王茂淋), Zheng S-X(郑世学), Yu Z-N(喻子牛), Zhang J-B(张吉斌). Cloning, expression and characteristics of ATP: citrate lyase from Rhodotorula glutinis. Chem Bioengin (化学与生物工程), 2011, 28: 44-48 (in Chinese with English abstract)



[18]Calsa Jr T, Figueira A. Serial analysis of gene expression in sugarcane (Saccharum spp.). Plant Mol Biol, 2007, 63: 745-762



[19]Rocha F R, Papini-Terzi F S, Nishiyama M Y Jr, Vêncio R Z, Vicentini R, Duarte R D, de Rosa V E Jr, Vinagre F, Barsalobres C, Medeiros A H, Rodrigues F A, Ulian E C, Zingaretti S M, Galbiatti J A, Almeida R S, Figueira A V, Hemerly A S, Silva-Filho M C, Menossi M, Souza G M. Signal transduction-related re sponses to phytohormones and environmental challenges in sugarcane. BMC Genomics, 2007, 8: 71



[20]Iskandar H M, Casu R E, Fletcher A T, Schmidt S, Xu J, Maclean D J, Manners J M, Bonnett G D. Identification of drought-response genes and a expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biol, 2011, 11: 12



[21]Elstner E F, Heupel A. Inhibition of nitrite formation from hydroxyllammonium chloride: a simple assay for superoxide dismutase. Anal Biochem, 1976, 70: 616-620



[22]Yang Y, Costa A, Leonhardt N, Siegel R S, Schroeder J I. Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods, 2008, 4: 6



[23]Zeller G, Henz S R, Widmer C K, Sachsenberg T, Rätsch G, Weigel D, Laubinger S. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J, 2009, 58: 1068-1082



[24]Ye N, Zhu G, Liu Y, Li Y, Zhang J. ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol, 2011, 52: 689-698



[25]Takeuchi A, Yamaguchi M, Uritani I. ATP citrate lyase from Ipomoea batatas root tissue infected with Ceratocystis fimbriata, Phytochemistry, 1981, 20: 1235-1239



[26]Chávez-Cabrera C, Flores-Bustamante Z R, Marsch R, Montes Mdel C, Sánchez S, Cancino-Díaz J C, Flores-Cotera L B. ATP-citrate lyase activity and carotenoid production in batch cultures of Phaffia rhodozyma under nitrogen-limited and nonlimited conditions. Appl Microbiol Biotechnol, 2010, 85: 1953-1960



[27]Jiang M Y, Zhang J H. Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410



[28]Li C-N(李长宁), Srivastava M K, Nong Q(农倩), Li Y-R(李杨瑞). Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress. Acta Agron Sin (作物学报), 2010, 36(5): 863-870 (in Chinese with English abstract)



[29]Tabuchi A, Funaji K, Nakatsubo J, Fukuchi M, Tsuchiya T, Tsuda M. Inactivation of aconitase during the apoptosis of mouse cerebellar granule neurons induced by a deprivation of membrane depolarization. J Neurosci Res, 2003, 71: 504-515



[30]Mailloux R J, Bériault R, Lemire J, Singh R, Chénier D R, Hamel R D, Appanna V D. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One, 2007, 2: e690



[31]Baxter C J, Redestig H, Schauer N, Repsilber D, Patil K R, Nielsen J, Selbig J, Liu J, Fernie A R, Sweetlove L J. The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol, 2007, 143: 312-325



[32]Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D, Or E. Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol, 2009, 71: 403-423



[33]Neumann G, Römmheld V. Root excretion of carboxylic acids and protons in phosphorous deficient plants. Plant Soil, 1999, 211: 121-130



[34]Neumann G, Martinoia E. Cluster roots-an underground adaptation for survival in extreme environments. Trends Plant Sci, 2002, 7: 162-167



[35]Kanao T, Fukui T, Atomi H, Imanaka T. ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola is a heteromeric enzyme composed of two distinct gene products. Eur J Biochem, 2001, 268: 1670-1678



[36]Kim W, Tabita F R. Both subunits of ATP-citrate lyase from Chlorobium tepidum contribute to catalytic activity. J Bacteriol, 2006, 188: 6544-6552

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[5] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[6] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[7] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[8] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[9] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[10] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[14] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[15] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!