作物学报 ›› 2012, Vol. 38 ›› Issue (11): 2024-2033.doi: 10.3724/SP.J.1006.2012.02024
李长宁1,2,农倩1,谭秦亮1,SRIVASTAVA Manoj Kumar 2,杨丽涛1,2,李杨瑞1,2,*
LI Chang-Ning1,2,NONG Qian1,TAN Qin-Liang1,SRIVASTAVA Manoj Kumar2,YANG Li-Tao1,2,LI Yang-Rui1,2,*
摘要:
ATP柠檬酸裂解酶(ACL)为细胞质中乙酰辅酶A合成途径的关键调控酶,在生物体正常生长发育中扮演着重要角色。本研究通过Race和电子克隆技术获得编码甘蔗ACL蛋白2个亚基的基因SoACLA-1和SoACLB-1,其编码框长度分别为1 272 bp和1 827 bp,编码423个和608个氨基酸,推测的氨基酸序列与其他物种具有高度相似性,都优先与禾本科植物聚于同一进化分支。2个基因在ATP-grasp功能域、柠檬酸结合位点、组氨酸磷酸化位点和ATP结合、CoA结合、磷酸化区域等,序列高度保守。实时荧光定量PCR结果表明,2个基因均受外源ABA、水分胁迫、水分胁迫加ABA处理诱导表达,且叶中表达量显著高于根系,其中又以水分胁迫处理下的表达量最高,2个基因表现出协同表达模式。SoACLA-1和SoACLB-1的表达与ABA、ROS含量具有相关性,说明它们可能参与了ABA调控的植物对逆境胁迫反应的代谢过程。
[1]Nikolau B J, Ohlrogge J B, Wurtele E S. Plant biotincontaining carboxylases. Arch Biochem Biophys, 2003, 414: 211-222[2]Falk K L, Vogel C, Textor S, Bartram S, Hick A, Pickett J A, Gershenzon J. Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa. Phytochemistry, 2004, 65: 1073-1084[3]Klumppa S, Bechmanna G, Mäurera A, Selkea D, Krieglsteinb J. ATP-citrate lyase as a substrate of protein histidine phosphatase in vertebrates. Biochem Biophys Res Commun, 2003, 306: 110-115[4]Takahashi H, McCaffery J M, Irizarry R A, Boeke J D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell, 2006, 23: 207-217[5]Wellen K E, Hatzivassiliou G, Sachdeva U M, Bui T V, Cross J R, Thompson C B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 2009, 324: 1076-1080[6]Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K. hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell, 2002, 14: 1017-1031[7]Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta, 2003, 1632: 1-15[8]Shalit M, Guterman I, Volpin H, Bar E, Tamari T, Menda N, Adam Z, Zamir D, Vainstein A, Weiss D, Pichersky E, Lewinsohn E. Volatile ester formation in roses: identification of an acetyl-coenzyme A geraniol/citronellol acetyltransferase in developing rose petals. Plant Physiol, 2003, 131: 1868-1876[9]Son H, Lee J, Park A R, Lee Y W. ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genet Biol, 2011, 48: 408-417[10]Schwender J, Ohlrogge J B. Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol, 2002, 130: 347-361[11]Schwender J, Ohlrogge J B, Shachar-Hill Y. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem, 2003, 278: 29442-29453[12]Hynes M J, Murray S L. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryotic cell, 2010, 9: 1039-1048[13]Fatland B L, Ke J, Anderson M D, Mentzen W I, Cui L W, Allred C C, Johnston J L, Nikolau B J, Wurtele E S. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol, 2002, 130: 740-756[14]Fatland B L, Nikolau B J, Wurtele E S. Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. Plant Cell, 2005, 17: 182-203[15]Fu S-X(付三雄), Qi C-K(戚存扣). Identification of genes differentially expressed in seeds of Brassica napus planted in Nanjing and Lhasa by Arabidopsis microarray. Chin Bull Bot (植物学报), 2009, 44(2): 178-184 (in Chinese with English abstract)[16]Wang S-Y(王树源), Chen J-M(陈健美), Qi W-C(戚维聪), Tian L-L(田琳琳), Guan R-Z(管荣展). Correlation between ATP-citrate lyase activity and seed oil content of canola lines. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31: 279-284 (in Chinese with English abstract)[17]Zhao J(赵检), Wang X-Y(王旭颖), Wang M-L(王茂淋), Zheng S-X(郑世学), Yu Z-N(喻子牛), Zhang J-B(张吉斌). Cloning, expression and characteristics of ATP: citrate lyase from Rhodotorula glutinis. Chem Bioengin (化学与生物工程), 2011, 28: 44-48 (in Chinese with English abstract)[18]Calsa Jr T, Figueira A. Serial analysis of gene expression in sugarcane (Saccharum spp.). Plant Mol Biol, 2007, 63: 745-762[19]Rocha F R, Papini-Terzi F S, Nishiyama M Y Jr, Vêncio R Z, Vicentini R, Duarte R D, de Rosa V E Jr, Vinagre F, Barsalobres C, Medeiros A H, Rodrigues F A, Ulian E C, Zingaretti S M, Galbiatti J A, Almeida R S, Figueira A V, Hemerly A S, Silva-Filho M C, Menossi M, Souza G M. Signal transduction-related re sponses to phytohormones and environmental challenges in sugarcane. BMC Genomics, 2007, 8: 71[20]Iskandar H M, Casu R E, Fletcher A T, Schmidt S, Xu J, Maclean D J, Manners J M, Bonnett G D. Identification of drought-response genes and a expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biol, 2011, 11: 12[21]Elstner E F, Heupel A. Inhibition of nitrite formation from hydroxyllammonium chloride: a simple assay for superoxide dismutase. Anal Biochem, 1976, 70: 616-620[22]Yang Y, Costa A, Leonhardt N, Siegel R S, Schroeder J I. Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods, 2008, 4: 6[23]Zeller G, Henz S R, Widmer C K, Sachsenberg T, Rätsch G, Weigel D, Laubinger S. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J, 2009, 58: 1068-1082[24]Ye N, Zhu G, Liu Y, Li Y, Zhang J. ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol, 2011, 52: 689-698[25]Takeuchi A, Yamaguchi M, Uritani I. ATP citrate lyase from Ipomoea batatas root tissue infected with Ceratocystis fimbriata, Phytochemistry, 1981, 20: 1235-1239[26]Chávez-Cabrera C, Flores-Bustamante Z R, Marsch R, Montes Mdel C, Sánchez S, Cancino-Díaz J C, Flores-Cotera L B. ATP-citrate lyase activity and carotenoid production in batch cultures of Phaffia rhodozyma under nitrogen-limited and nonlimited conditions. Appl Microbiol Biotechnol, 2010, 85: 1953-1960[27]Jiang M Y, Zhang J H. Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410[28]Li C-N(李长宁), Srivastava M K, Nong Q(农倩), Li Y-R(李杨瑞). Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress. Acta Agron Sin (作物学报), 2010, 36(5): 863-870 (in Chinese with English abstract)[29]Tabuchi A, Funaji K, Nakatsubo J, Fukuchi M, Tsuchiya T, Tsuda M. Inactivation of aconitase during the apoptosis of mouse cerebellar granule neurons induced by a deprivation of membrane depolarization. J Neurosci Res, 2003, 71: 504-515[30]Mailloux R J, Bériault R, Lemire J, Singh R, Chénier D R, Hamel R D, Appanna V D. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One, 2007, 2: e690[31]Baxter C J, Redestig H, Schauer N, Repsilber D, Patil K R, Nielsen J, Selbig J, Liu J, Fernie A R, Sweetlove L J. The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol, 2007, 143: 312-325[32]Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D, Or E. Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol, 2009, 71: 403-423[33]Neumann G, Römmheld V. Root excretion of carboxylic acids and protons in phosphorous deficient plants. Plant Soil, 1999, 211: 121-130[34]Neumann G, Martinoia E. Cluster roots-an underground adaptation for survival in extreme environments. Trends Plant Sci, 2002, 7: 162-167[35]Kanao T, Fukui T, Atomi H, Imanaka T. ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola is a heteromeric enzyme composed of two distinct gene products. Eur J Biochem, 2001, 268: 1670-1678[36]Kim W, Tabita F R. Both subunits of ATP-citrate lyase from Chlorobium tepidum contribute to catalytic activity. J Bacteriol, 2006, 188: 6544-6552 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[4] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[5] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[6] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[7] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[8] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[9] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[10] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[13] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[14] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[15] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
|