作物学报 ›› 2013, Vol. 39 ›› Issue (01): 50-59.doi: 10.3724/SP.J.1006.2013.00050
吴绍华1,2,张红宇1,薛晶晶1,徐培洲1,吴先军1,*
WU Shao-Hua1,2,ZHANG Hong-Yu1,XUE Jing-Jing1,XU Pei-Zhou1,WU Xian-Jun1,*
摘要:
[1]Zhang H-Y(张红宇), Peng H(彭海), Li Y(李云), Xu P-Z(徐培洲), Wang X-D(汪旭东), Wu X-J(吴先军). Patterns of DNA cytosine methylation between haploids and corresponding diploids in rice. Chin Sci Bull (科学通报), 2006, 51(13): 1529–1535 (in Chinese)[2]Peng H(彭海), Zhang H-Y(张红宇), Li Y(李云), Xu P-Z(徐培洲), Wang X-D(汪旭东), Wu X-J(吴先军). Natural homologous triploidization and DNA methylation of twin-seedling rice SARII-628. Chin J Rice Sci (中国水稻科学), 2006, 20(5): 469–474 (in Chinese with English abstract)[3]Wu S-H(吴绍华), Xue J-J(薛晶晶), Zhang H-Y(张红宇), Xu P-Z(徐培洲), Wu X-J(吴先军). Analysis of special DNA methylated sites between haploid of twin-seedling and its hybrids in rice. Chin J Rice Sci (中国水稻科学), 2011, 25(3): 249–253 (in Chinese with English abstract)[4]Jiao Y N, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H Y, Soltis P S, Soltis D E, Clifton S W, Schlarbaum S E, Schuster S C, Ma H, Leebens-Mack J, dePamphilis C W. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473: 97–100[5]Feng S, Cokus S J, Zhang X, Chen P Y, Bostick M, Goll M G, Hetzel J, Jain J, Strauss S H, Halpern M E, Ukomadu C, Sadler K C, Pradhan S, Pellegrini M, Jacobsen S E. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA, 2010, 107: 8689–8694[6]Zemach A, McDaniel I E, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 2010, 328: 916–919[7]Cuperus J T., Fahlgren N, Carrington J C. Evolution and functional diversification of MIRNA genes. Plant Cell, 2011, 23: 431–442[8]Fahlgren N, Jogdeo S, Kasschau K D, Sullivan C M, Chapman E J, Laubinger S, Smith L M, Dasenko M, Givan S A, Weigel D, Carrington J C. MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell, 2010, 22: 1074–1089[9]Wang S, Zhu Q H, Guo X, Gui Y, Bao J, Helliwell C, Fan L. Molecular evolution and selection of a gene encoding two tandem microRNAs in rice. FEBS Lett, 2007, 581: 4789–4793[10]Xu Y-M(徐艳敏), Guo Y-H(郭艳合), Liu L(刘立), Cai R(蔡荣), Qian C(钱程). The reciprocal modulation between epigenetic and microRNA and the application for treatment of malignant tumors. Prog Biochem Biophys (生物化学与生物物理进展), 2008, 35(12): 1343–1350 (in Chinese with English abstract)[11]Weber B, Stresemann C, Brueckner B, Lyko F. Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle, 2007, 6: 1001–1005[12]Onodera Y, Haag J R, Ream T, Nunes P C, Pontes O, Pikaard C S. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell, 2005, 120: 613–622[13]Zilberman D, Cao X, Jacobsen S E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 2003, 299: 716–719[14]Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y. DNA methylation mediated by a microRNA pathway. Mol Cell, 2010, 38: 465–475[15]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607[16]Xiong L Z, Xu C G, Saghai Maroof M A, Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet, 1999, 261: 439–446[17]Allen E, Xie Z, Gustafson A M, Carrington J C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005, 121: 207–221[18]Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One, 2007, 2: e219[19]Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303: 2022–2025[20]Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol, 2005, 15: 1501–1507[21]Jia X Y, Yan J, Tang G L. MicroRNA-mediated DNA methylation in plants. Front Biol, 2011, 6: 133–139[22]Bao N, Lye K W, Barton M K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell, 2004, 7: 653–662[23]Khraiwesh B, Arif M A, Seumel G I, Ossowski S, Weigel D, Reski R, Frank W. Transcriptional control of gene expression by microRNAs. Cell, 2010, 140: 111–122 |
[1] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[2] | 文钦, 贾思思, 王加峰, 黄翠红, 王慧, 陈志强, 郭涛. 水稻单倍体诱导基因OsMATL突变体的创制与分析[J]. 作物学报, 2021, 47(5): 827-836. |
[3] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[4] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[5] | 殷家明,钟荣棋,林呐,唐章林,李加纳. 诸葛菜小孢子培养及其单倍体减数分裂染色体配对观察[J]. 作物学报, 2020, 46(02): 194-203. |
[6] | 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704. |
[7] | 李鹏程,毕真真,梁文君,孙超,张俊莲,白江平. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603. |
[8] | 王琪月, 孟淑君, 张柯, 张战辉, 汤继华, 丁冬. 玉米雌穗发育杂种优势相关miRNA的研究[J]. 作物学报, 2018, 44(6): 796-813. |
[9] | 张旸,胡中影,赵月明,李娜,解莉楠. 羽衣甘蓝自交不亲和与自交亲和系种子萌发期DNA甲基化的动态变化[J]. 作物学报, 2016, 42(04): 532-539. |
[10] | 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055. |
[11] | 谭河林,许欣颖,付立曼,向小娥,李剑桥,郭昊伦,叶文雪. 甘蓝型油菜及其亲本物种甲基化酶I基因的克隆及表达模式[J]. 作物学报, 2015, 41(03): 405-413. |
[12] | 黄志熊,王飞娟,蒋晗,李志兰,丁艳菲,江琼,陶月良,朱诚. 两个水稻品种镉积累相关基因表达及其分子调控机制[J]. 作物学报, 2014, 40(04): 581-590. |
[13] | 陈新民,王凤菊,李思敏,张文祥. 小麦与玉米杂交产生小麦单倍体与双单倍体的稳定性[J]. 作物学报, 2013, 39(12): 2247-2252. |
[14] | 赵旭博,李爱丽,毛龙. 植物多倍化过程中小分子RNA调控基因表达机制研究进展[J]. 作物学报, 2013, 39(08): 1331-1338. |
[15] | 赵志刚,富贵,邓昌蓉,杜德志. 人工合成甘蓝型油菜早期世代基因组变异的AFLP和MSAP标记研究[J]. 作物学报, 2013, 39(07): 1231-1239. |
|