欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 43-49.doi: 10.3724/SP.J.1006.2013.00043

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

中国糯玉米wx基因种质资源遗传多样性

姚坚强1,2,鲍坚东2,3,朱金庆1,桂毅杰2,沈秋芳2,胡伟民2,樊龙江2,*   

  1. 樊龙江, E-mail: fanlj@zju.edu.cn, Tel: 0571-88982730
  • 收稿日期:2012-05-04 修回日期:2012-08-15 出版日期:2013-01-12 网络出版日期:2012-10-08
  • 基金资助:

    本研究由浙江省自然科学基金项目(Y3080059)资助。

Genetic Diversity of Waxy Gene in Chinese Glutinous Maize

YAO Jian-Qiang1,2,BAO Jian-Dong2,3,ZHU Jin-Qing1,GUI Yi-Jie2,SHEN Qiu-Fang2,HU Wei-Min2,FAN Long-Jiang2,*   

  1. 樊龙江, E-mail: fanlj@zju.edu.cn, Tel: 0571-88982730
  • Received:2012-05-04 Revised:2012-08-15 Published:2013-01-12 Published online:2012-10-08

摘要:

Waxy(Wx)基因是众多作物导致糯性突变的关键基因,在玉米作物群体内深入研究Wx基因对中国糯玉米品质育种和种质创新具有重要意义。本研究利用325(309份来自中国,11份来自泰国和5份来自韩国)糯玉米种质材料做了wx基因突变类型的调查和表观直链淀粉含量(AAC)测定。结果表明, 中国糯玉米的wx基因的遗传多样性很低,主要存在wx-D7wx-D10两种突变类型,占96.9%;中国北方及韩国的糯玉米wx基因突变类型都是wx-D7类型,南方及泰国糯玉米wx基因突变类型都是wx-D10类型;糯玉米地方品种的wx基因型以wx-D10为主,占78.9%,而商业杂交种和自交系的wx基因型以wx-D7为主,分别88.7%86.6%。分析表明,中国糯玉米商业杂交种和自交系的AAC均值较低(小于2.2%)且无显著差异,但地方品种的AAC均值较高;wx-D7基因型糯玉米的AAC均值低且变化幅度较小,而wx-D10基因型糯玉米的AAC均值最高且变化幅度较大。本文还讨论了中国糯玉米主要wx基因型的地理分布、起源以及其他的wx基因突变类型。

关键词: 糯玉米, wx基因, 遗传多样性, 调查, 表观直链淀粉含量(AAC)

Abstract:

Waxy (Wx) gene is the key gene for glutinous trait in many waxy crops including waxy maize. Wx diversity investigation in maize population has important significance for quality breeding and germplasm utility of Chinese waxy maize. In this study, 325 waxy maize germplasm accessions (309 from China, 11 from Thailand and five from South Korea) were used to investigate their wx genotypes and determine their apparent amylose content (AAC). Our results demonstrated that genetic diversity of wx gene in Chinese waxy maize was low, and two mutation types, wx-D7 andwx-D10, account for 96.9% of the 325 accessions. Among these accessions, those from North of China and South Korea were the type of wx-D7 while others from South of China and Thailand were the type of wx-D10; most of landraces were the type of wx-D10 (78.9%) while most commercial hybrids and inbred lines were the type of wx-D7 (88.7% and 86.6%, respectively). AAC estimations indicated that mean values of AAC in commercial hybrids and inbred lines in China were lower than 2.2% while that in landraces was relatively high. Comparing with wx-D7, wx-D10 waxy corn had higher AAC with larger changing range. Geographical distribution and origins of two main wx genotypes and other wx genotypes were discussed also.

Key words: Glutinous maize, Waxy, Genetic diversity, Investigation, Apparent amylose content (AAC)

[1]Fedoroff N, Wessler S, Shure M. Isolation of the transposable maize controlling elements Ac and Ds. Cell, 1983, 35: 235–242



[2]Hirano H Y, Sano Y. Molecular characterization of the waxy locus of rice (Oryza sativa). Plant Cell Physiol, 1991, 32: 989–997



[3]Wang Z Y, Zheng F Q, Shen G Z, Gao J P, Snustad D P, Li M G, Zhang J L, Hong M M. The amylose content in rice endosperm is related to the posttranscriptional regulation of the waxy gene. Plant J, 1995, 7: 613–622



[4]Hirano H Y, Eiguchi M, Sano Y. A single base change altered the regulation of the waxy gene at the posttranscriptional level during the domestication of rice. Mol Biol Evol, 1998, 15: 978–987



[5]Isshiki M, Morino K, Nakajima M, Okagaki R J, Wessler S R, Izawa T, Shimamoto K. A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5’ splice site of the first intron. Plant J, 1998, 15: 133–138



[6]Olsen K M, Purugganan M D. Molecular evidence on the origin and evolution of glutinous rice. Genetics, 2002, 162: 941–950



[7]McIntyre C L, Drenth J, Gonzalez N, Henzell R G, Jordan D R. Molecular characterization of the waxy locus in sorghum. Genome, 2008, 51: 524–533



[8]Domon E, Fuijita M, Ishikawa N. The insertion/deletion polymorphisms in the waxy gene of barley genetic resources from east Asia. Theor Appl Genet, 2002, 104: 132–138



[9]Patron N J, Smith A M, Fahy B F, Hylton C M, Naldrett M J, Rossnagel B G, Denyer K. The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase i with a deletion in the 5'-non-coding region. Plant Physiol, 2002, 130: 190–198



[10]Hunt H V, Denyer K, Packman L C, Jones M K, Howe C J. Molecular basis of the waxy endosperm starch phenotype in broomcorn millet (Panicum miliaceum L.). Mol Biol Evol, 2010, 27: 1478–1494



[11]Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T. Production of waxy (amylose-free) wheats. Mol Gen Genet, 1995, 248: 253-259



[12]Wessler S R, Varagona M J. Molecular basis of mutations at the waxy locus of maize: correlation with the fine structure genetic map. Proc Natl Acad Sci USA, 1985, 82: 4177–4181



[13]Wessler S, Tarpley A, Purugganan M, Spell M, Okagaki R. Filler DNA is associated with spontaneous deletions in maize. Proc Natl Acad Sci USA, 1990, 87: 8731–8735



[14]Marillonnet S, Wessler S R. Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell, 1997, 9: 967–978



[15]Liu J, Rong T Z, Li W C. Mutation loci and intragenic selection marker of the granule-bound starch synthase gene in waxy maize. Mol Breed, 2007, 20: 93–102



[16]Klosgen R B, Gierl A, Schwarzsommer Z, Saedler H. Molecular analysis of the waxy locus of Zea mays. Mol Biol Evol, 1986, 203: 237–244



[17]Fan L J, Quan L Y, Leng X D, Guo X Y, Hu W M, Ruan S L, Ma H S, Zeng M Q. Molecular evidence for post-domestication selection in the waxy gene of Chinese waxy maize. Mol Breed, 2008, 22: 329–338



[18]Fan L J, Bao J D, Wang Y, Yao J Q, Gui Y J, Hu W M, Zhu J Q, Zeng M Q, Li Y, Xu Y B. Post-domestication selection in the maize starch pathway. PLoS One, 2009, 4: e7612



[19]Tian M-L(田孟良), Huang Y-B(黄玉碧), Tan G-X(谭功燮), Liu Y-J(刘永建), Rong T-Z(荣廷昭). Sequence polymorphism of waxy genes in landraces of waxy maize from Southwest China. Acta Agron Sin (作物学报), 2008, 34(5): 729–736 (in Chinese with English abstract)



[20]Okagaki R J, Neuffer M G, Wessler S R. A deletion common to two independently derived waxy mutations of maize. Genetics, 1991, 128: 425–431



[21]Huang Y-B(黄玉碧), Rong T-Z(荣廷昭). Genetic diversity and origin of Chinese waxy maize. Crop (作物杂志), 1998, (suppl): 77–80 (in Chinese)



[22]Zeng M-Q(曾孟潜), Yang T-X(杨太兴), Wang P(王璞). The relative analyses on maize cultivar Menghai Four-Row Wax. Acta Genet Sin (遗传学报), 1981, 8(1): 91-96 (in Chinese with English abstract)



[23]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321-4325



[24]Shin J H, Kwon S J, Lee J K, Min H K, Kim N S. Genetic diversity of maize kernel starch-synthesis genes with SNAPs. Genome, 2006, 49: 1287–1296



[25]Bao J D, Yao J Q, Zhu J Q, Hu W M, Cai D G, Li Y, Shu QY, Fan L J. Identification of glutinous maize landraces and inbred lines with altered transcription of waxy gene. Mol Breed, 2012 (Published online: DOI 10.1007/s11032-012-9754-3)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 练云, 王金社, 魏荷, 李金英, 弓贵明, 王树峰, 张晶鹏, 李茂林, 郭建秋, 卢为国. 山西省古交市大豆胞囊线虫新小种X12分布调查[J]. 作物学报, 2021, 47(2): 237-244.
[4] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[5] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[6] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[7] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[8] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[9] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[10] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[11] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[12] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[13] 刘洪,徐振江,饶得花,鲁清,李少雄,刘海燕,陈小平,梁炫强,洪彦彬. 基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定[J]. 作物学报, 2019, 45(1): 26-36.
[14] 施龙建,文章荣,张世博,王珏,陆卫平,陆大雷. 开花期干旱胁迫对鲜食糯玉米产量和品质的影响[J]. 作物学报, 2018, 44(8): 1205-1211.
[15] 白冬梅,薛云云,赵姣姣,黄莉,田跃霞,权宝全,姜慧芳. 山西花生地方品种芽期耐寒性鉴定及SSR遗传多样性[J]. 作物学报, 2018, 44(10): 1459-1467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!