欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 868-877.doi: 10.3724/SP.J.1006.2013.00868

• 耕作栽培·生理生化 • 上一篇    下一篇

用单片段代换系研究水稻产量和籽粒充实对花后不同土壤干旱的响应

蔡一霞1,3,黄泽双1,朱海涛1,2,陈建军1,邓世媛1,王维1,*   

  1. 1 华南农业大学农学院, 广东广州 510642;2 华南农业大学广东省植物分子育种重点实验室, 广东广州 510642;3 农业部华南热带农业环境重点实验室,广东广州 510642
  • 收稿日期:2012-09-20 修回日期:2012-12-12 出版日期:2013-05-12 网络出版日期:2013-02-19
  • 通讯作者: 王维, E-mail: wangwei@scau.edu.cn, Tel: 13434320007
  • 基金资助:

    本研究由国家自然科学基金项目(30871489, 30600376, 30700484)资助。

Responses of the Yield and the Grain Filling to Different Post-Anthesis Soil Drought Analyzed with Single Segment Substitution Line (SSSL) in Rice (Oryza sativa L.)

CAI Yi-Xia1,3,HUANG Ze-Shuang1,ZHU Hai-Tao1,2,CHEN Jian-Jun1,DENG Shi-Yuan1,WANG Wei1,*   

  1. 1 College of Agronomy, South China Agricultural University, Guangzhou 510642, China; 2 Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; 3 Key Laboratory of Agro-Environment in Tropics, Ministry of Agriculture, Guangzhou 510642, China
  • Received:2012-09-20 Revised:2012-12-12 Published:2013-05-12 Published online:2013-02-19
  • Contact: 王维, E-mail: wangwei@scau.edu.cn, Tel: 13434320007

摘要:

以介入巴西陆稻IAPAR9抗性基因片段的单片段代换系(single segment substitution line, SSSL)和受体亲本华粳籼74为材料,设置正常灌水(CK)、中度干旱胁迫(MD)、重度干旱胁迫(SD) 3种土壤水分处理,分析SSSL和受体亲本籽粒灌浆特征、蔗糖及淀粉代谢中相关酶活性动态,探讨了水稻籽粒充实和产量对花后干旱胁迫响应的生理机制。结果表明,与受体亲本相比,携带抗旱基因的SSSLMDSD处理下其耐旱性的表现更为明显,减产幅度明显小于受体亲本。在花后7 d开始的中、重度干旱胁迫处理下,灌浆中后期SSSL叶片相对含水量、叶绿素含量和光合速率下降幅度明显小于受体亲本,其籽粒中蔗糖合酶(sucrose synthase, SS)、酸性蔗糖转化酶(acid invertase, AINV)、腺苷二磷酸葡萄糖焦磷酸化酶(ADP glucose pyrophosphorylase, AGPP)﹑可溶性淀粉合酶(soluble starch synthase, SSS)Q酶活性在灌浆前()期也明显上升,增强了SSSL籽粒灌浆中前期库活性。虽然持续的干旱胁迫使得上述酶活性在灌浆的中后期快速下降,导致同化物积累的活跃灌浆期缩短,但SSSL籽粒平均灌浆速率和最大灌浆速率明显高于受体亲本,这在一定程度上可弥补因灌浆期缩短导致的同化物积累损失,干旱胁迫下SSSL产量高于受体亲本,这一趋势在重度干旱胁迫下更为明显。

关键词: 水稻, 干旱胁迫, 抗旱性, 籽粒灌浆, 产量, 单片段代换系

Abstract:

To explore the physiological mechanisms of the yield and the grain filling in rice affected by post-anthesis soil drought, we analyzed the characters of grain filling and the activities of enzymes involved in sucrose metabolism and starch synthesis in the single segment substitution line (SSSL) and its receptor parent Huajingxian 74 under normal (CK), moderate deficit (SD) and severe deficit (MD) water conditions after flowering were analyzed. The result showed that the SSSL, containing the resistance gene segment provided by Brazil upland rice, presented higher drought resistance than its receptor parent Huajingxian 74 under the MD and SD treatments. The yield reduction in SSSL was much less than that in Huajingxian 74. SPAD values and net photosynthetic rate of flag leaf in SSSL under the MD and SD treatments applied at 7 day after anthesis (DAA) were less than its receptor parent during mid and late grain-filling period, and the activities of sucrose synthase (SS), acid invertase (AINV), ADP glucose pyrophosphorylase (AGPP), soluble starch synthase (SSS), and Q enzymes in SSSL grains were elevated remarkably, resulting in the enhancement of grain sink activities under MD and SD at early and mid grain-filling stages. Although the activities of the above mentioned enzymes were descended much quickly during late grain-filling period under the continuous drought stress, which could shorten the duration of active grain-filling significantly, the average and the maximum grain-filling rates of SSSL under MD and SD were increased much more those that of the receptor parent during mid and early filling period, which could compensate for the loss of assimilate accumulation in grain by the abatement of active grain-filling duration, consequently the yield of SSSL under drought stress was higher than that of receptor parent, especially under SD.

Key words: Rice, Drought stress, Drought resistance, Grain filling, Yield, Single segment substitution lines

[1]Duan A-W(段爱旺), Zhang J-Y(张寄阳). Water use efficiency of grain crops in irrigated farmland in China. Trans CSAE (农业工程学报), 2000, 16(4): 41–44 (in Chinese with English abstract)



[2]Kang S-Z (康绍忠), Hu X-T(胡笑涛), Cai H-J(蔡焕杰), Feng S-Y(冯绍元). New ideas and development tendency of theory for water saving in modern agriculture and ecology. J Hydraul Eng (水利学报), 2004, 35(12): 1–7 (in Chinese with English abstract)



[3]Peng S-Z(彭世彰), Xu J-Z(徐俊增). Theory and Technology of Rice Control Irrigation (水稻控制灌溉理论与技术). Nanjing: HoHai University Press, 2011 (in Chinese)



[4]Bouman B A M, Humphreys E, Tuong T P, Barker R. Rice and water. Adv Agron, 2007, 92: 187–237



[5]Khan S, Hanjra M A, Mu J X. Water management and crop production for food security in China: a review. Agric Water Manag, 2009, 96: 349–360



[6]Witcombe J R, Hollington P A, Howarth C J, Reader S, Steele K A. Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc Lond B Biol Sci, 2008, 363: 703–716



[7]Wang W(王维), Cai Y-X(蔡一霞), Zhang J-H(张建华), Yang J-C(杨建昌), Zhu Q-S(朱庆森). Regulation of controlled soil drying on remobilization of stem-stored carbohydrate to grain in wheat grown under unfavorably-delayed senescence. Acta Agron Sin (作物学报), 2005, 31(3): 289–296 (in Chinese with English abstract)



[8]Yang J-C(杨建昌), Liu K(刘凯), Zhang S-F(张慎凤), Wang X-M(王学明), Wang Z-Q(王志琴), Liu L-J(刘立军). Hormones in rice spikelets in responses to water stress during meiosis. Acta Agron Sin (作物学报), 2008, 34(1): 111–118 (in Chinese with English abstract)



[9]Centritto M, Lauteri M, Monteverdi M C, Serraj R. Leaf gas exchange, carbon isotope discrimination and grain yield in contrasting rice genotypes subjected to water deficits during reproductive stage. J Exp Bot, 2009, 60: 2325–2339



[10]Hemamalini G S, Shashidhar H E, Hittalmani S. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica, 2000, 112: 69–78



[11]Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol, 2003, 30: 239–264



[12]Wang W(王维), Cai Y-X(蔡一霞), Cai K-Z(蔡昆争), Zhang J-H(张建华), Yang J-C(杨建昌), Zhu Q-S(朱庆森). Effects of soil water deficit on physiological causes of rice grain-filling. Chin J Plant Ecol (植物生态学报), 2011, 35(2): 195–202 (in Chinese with English abstract)



[13]Boonjung H, Fukai S. Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 2. Phenology, biomass production and yield. Field Crops Res, 1996, 48: 47–55



[14]Guan Y S, Serraj R, Liu S H, Xu J L, Ali J, Wang W S, Venus E, Zhu L H, Li Z K. Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza stavia L.). J Exp Bot, 2010, 61: 4145–4156



[15]Yang J C, Zhang J H. Grain filling of cereals under soil drying. New Phytol, 2006, 169: 223–236



[16]Venkateswarlu B, Vergara B S, Parao F T, Visperas R M. Enhancing grain yield potentials in rice by increasing the number of high density grains. Philippine J Crop Sci, 1986, 11: 145–152



[17]Zhao B-H(赵步洪), Yang J-C(杨建昌), Zhu Q-S(朱庆森), Zhang H-X(张洪熙). Effect of water stress on grain filling of two-line hybrid rice. J Yangzhou Univ (Agric & Life Sci Edn)(扬州大学学报•农业与生命科学版), 2004, 25(2): 11–16 (in Chinese with English abstract)



[18]Wang H-Z(王贺正), Ma J(马均), Li X-Y(李旭毅), Zhang R-P(张荣萍). Effects of water stress on grain filling and activities of enzymes involved in starch synthesis in rice. Sci Agric Sin (中国农业科学), 2009, 42(5): 1550–1558 (in Chinese with English abstract)



[19]Zhang G Q, Zeng R Z, Zhang Z M. The construction of a library of single segment substitution lines in rice (Oryza sativa L.). Rice Genet Newsl, 2004, 21: 85–87



[20]Zhu Q-S(朱庆森), Huang P-S(黄丕生). A Collection of Papers on Water-Saving Rice Cultivation Research (水稻节水栽培研究论文集). Beijing: China Agricultural Science and Technology Press, 1995. pp 1–15 (in Chinese)



[21]Gao J-F(高俊凤). Experimental Guidance for Plant Physiology(植物生理学实验指导). Beijing: Higher Education Press, 2006. pp 15–16 (in Chinese)



[22]Zhu Q-S(朱庆森), Cao X-Z(曹显祖), Luo Y-Q(骆亦其). Growth analysis in the process of grain filling in rice. Acta Agron Sin (作物学报), 1988, 14(3): 182–193 (in Chinese with English abstract) 



[23]Zhang Z-L(张志良), Zhai W-Q(翟伟菁). Experimental Guide for Plant Physiology (植物生理实验指导), 3rd edn. Beijing: Higher Education Press, 2004. pp 127–129 (in Chinese)



[24]Douglas C D, Tsung M K, Frederick C F. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreeds of maize. Plant Physiol, 1988, 86: 1013–1019



[25]Huber S C, Huber J L. Activation of sucrose phosphate synthase from darkened spinach leaves by endogenous protein phosphatase. Arch Biochem Biophys, 1990, 282: 421–426



[26]Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 56: 833–839



[27]Li T-G(李太贵), Shen B(沈波), Chen N(陈能), Luo Y-K(罗玉坤). Effect of Q-enzyme on the chalkiness formation of rice grain. Acta Agron Sin (作物学报), 1997, 23(3): 338–344 (in Chinese with English abstract)



[28]Luo L-J(罗利军), Zhang Q-F(张启发). The status and strategy on drought resistance of rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2001, 15(3): 209–214 (in Chinese with English abstract)



[29]Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Water deficit-induced senescence and its relationship to remobilization of pre-stored carbon in wheat during grain filling. Agron J, 2001, 93: 196–206



[30]Virgona J M, Barlow E W R. Drought stress induces changes in the non-structural carbohydrate composition of wheat stems. Aust J Plant Physiol, 1991, 18: 239–247



[31]Zhang J, Sui X, Li B, Li J, Zhou D. An improved water-use efficiency for winter wheat grown under reduced irrigation. Field Crops Res, 1998, 59: 91–98



[32]Yang J C, Zhang J H. Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010, 61: 3177–3189



[33]Liang J-S(梁建生), Cao X-J(曹显祖), Xu S(徐生), Zhu Q-S(朱庆森), Song P(宋平). Studies on the relationship between the grain sink strength and its starch accumulation in rice (O. sativa). Acta Agron Sin (作物学报), 1994, 20(6): 685–691 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[13] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[14] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[15] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!