欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1119-1126.doi: 10.3724/SP.J.1006.2013.01119

• 研究简报 • 上一篇    下一篇

宿根矮化病菌诱导甘蔗差异表达基因的cDNA-SCoT分析

陈明辉1,张保青1,宋修鹏1,陈虎3,杨丽涛1,2,*,李杨瑞1,2,*,陈保善1   

  1. 1 广西大学 / 亚热带农业生物资源保护与利用国家重点实验室, 广西南宁 530005; 2中国农业科学院甘蔗研究中心 / 广西作物遗传改良生物技术重点开放实验室 / 农业部广西甘蔗生物技术与遗传改良重点实验室 / 广西甘蔗遗传改良重点实验室, 广西南宁 530007; 3广西林业科学院, 广西南宁 530002
  • 收稿日期:2012-11-12 修回日期:2013-01-15 出版日期:2013-06-12 网络出版日期:2013-02-19
  • 通讯作者: 杨丽涛, E-mail: liyr@gxu.edu.cn, Tel: 0771-3236407; 李杨瑞, E-mail: liyr@gxaas.net, Tel: 0771-3247689
  • 基金资助:

    本研究由广西自然科学基金重点项目(2012GXNSFDA053011), 广西壮族自治区主席科技资金项目(11166-02), 科技部国际合作项目(2008DFA30600和2009DFA30820), 广西自然科学基金创新团队项目(2011GXNSFF018002), 广西农业科学院创新团队项目(桂农科2011YT01), 广西科学研究与技术开发计划项目(桂科产1123008-1和桂科能0815011)资助。

cDNA-SCoT Analysis of Differentially Expressed Genes in Sugarcane Induced by Leifsonia xyli subsp. xyli

CHEN Ming-Hui1,ZHANG Bao-Qing1,SONG Xiu-Peng1,CHEN Hu3,YANG Li-Tao1,2,*,LI Yang-Rui1,2*,CHEN Bao-Shan1   

  1. 1 Guangxi University / State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Nanning 530005, China; 2 Sugarcane Research Center, Chinese Academy of Agricultural Sciences / Guangxi Crop Genetic Improvement and Biotechnology Laboratory / Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China; 3 Guangxi Forestry Research Institute, Nanning 530002, China
  • Received:2012-11-12 Revised:2013-01-15 Published:2013-06-12 Published online:2013-02-19
  • Contact: 杨丽涛, E-mail: liyr@gxu.edu.cn, Tel: 0771-3236407; 李杨瑞, E-mail: liyr@gxaas.net, Tel: 0771-3247689

摘要:

宿根矮化病是危害严重的世界性甘蔗主要病害之一,为了探究甘蔗在该病胁迫下的抗病分子机制,本研究以甘蔗品种新台糖22健康植株为材料,利用含有宿根矮化病病原菌的蔗汁诱导其抗性,分别在接种后246810 d取样,构建宿根矮化病侵染处理与对照的RNA混合池,利用cDNA-SCoT法进行差异显示研究。结果表明,80SCoT引物扩增出500多条带,长度在100~1800 bp之间。从中筛选出30个差异明显的条带,测序后序列拼接,获得22条高质量的EST序列。生物信息学分析显示,对甘蔗宿根矮化病的差异基因主要涉及能量代谢、防卫反应、信号转导、蛋白质类代谢等方面。进一步基因功能分析显示,油菜素内酯合成蛋白、NBS-LRR类抗性蛋白、茉莉酸诱导蛋白、α-微管蛋白、ABA胁迫成熟蛋白、富含脯氨酸蛋白、翻译起始因子eif-2b α亚族等可能参与了甘蔗宿根矮化病病原菌互作的过程。

关键词: 甘蔗, 宿根矮化病, cDNA-SCoT, 差异基因

Abstract:

Ratoon stunting disease (RSD) is one of the major diseases, which is harmful to sugarcane in the world. To investigate the molecular mechanism of gene differential expression in sugarcane under ratoon stunting disease stress, we inoculated the stem of sugarcane variety ROC22 with cane juice with RSD pathogen Leifsonia xyli subsp. xyli to induce resistance, then took stem samples at 2, 4, 6, 8, and 10 days, respectively, after inoculation, and established different cDNA mixture pools transcribed from the stem RNA mixture pools of RSD treatment and control for cDNA-SCoT analysis to detect the gene differential expressions. More than 500 bands with length of 100–1800 bp were obtained using 80 SCoT primers. A total of 30 differentially expressed EST sequences were screened out, and 22 non-redundant ESTs with high quality were obtained by cluster analyses of the ESTs sequencing. The results of BlastN showed that the differentially expressed genes of ROC22 mainly related to energy metabolism, disease defense, signal transduction, and protein metabolism. Further analysis of gene function indicated that brassinosteroid biosynthesis-like proteins, NBS-LRR type disease resistance protein, jasmonic acid induced protein, α-tubulin, abscisic stress ripening protein, proline-rich protein, and translation initiation factor eif-2b α subunit may be involved in the process of the incompatible interaction between plants and Leifsonia xyli subsp. xyli.

Key words: Sugarcane, Ratoon stunting disease, cDNA-SCoT, Differential genes

[1]Hoy J W, Grisham M P, Damann K E. Spread and increase of ratoon stunting disease of sugarcane and comparison of disease detection methods. Plant Dis, 1999, 83: 1170–1175



[2]McDougall W A, Steindl D R L, Elliott J T. Variations in primary vigour in the variety Q28. Cane Growers’ Quarterly Bull, 1948, 12: 31–34



[3]Wu C-F(伍承芳), Huang M-Q(黄孟群). The ratoon stunting disease was found in continent of China. Sugarcane & Canesugar (甘蔗糖业), 1986, (3): 29–30 (in Chinese)



[4]Evtushenko L I, Dorofeeva L V, Subbotin S A, Cole J R, Tiedje J M. Leifsonia poae gen. nov., sp. nov., isolated from nematode galls on Poa annua, and reclassification of “Corynebacterium aquaticum” Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen. nov., nom. rev., comb. nov. and Clavibacter xyli Davis et al. 1984 with two subspecies as Leifsonia xyli (Davis et al. 1984) gen. nov., comb. nov. Int J Syst Evol Microbiol, 2000, 50: 371–380



[5]Davis M J, Dean J L. Comparison of diagnostic techniques for determining incidence of ratoon stunting disease of sugarcane in Florida. Plant Dis, 1984, 68: 896–899



[6]Grisham M P. Effect on ratoon stunting disease on yield of sugarcane grown in multiple three-year plantings. Phytopathology, 1991, 81: 337–340



[7]Teakle D S, Ryan C C. The effect of high temperature on the sugarcane ratoon stunting bacterium, Clavibacter xyli subsp. xyli, in vitro and in vivo. Sugar Cane, 1992, 6: 5–6



[8]Comstock J C, Shine J M, Jr, Davis M J, Dean J L. Relationship between resistance to Clavibacter xyli subsp xyli colonization in sugarcane and spread of ratoon stunting disease in the field. Plant Dis, 1996, 80: 704–708



[9]Taylor P W J, Petrasovits L A, van der Velde R, Birch R G, Croft B J, Fegan M, Smith G R, Brumbley S M. Development of PCR-based markers for detection of Leifsonia xyli subsp. xyli in fibrovascular fluid of infected sugarcane plants. Aust Plant Pathol, 2003, 32: 367–375



[10]Collard B C Y, Mackill D J, Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep, 2009, 27(1): 86–93



[11]Xiong F-Q(熊发前), Jiang J(蒋菁), Zhong R-C(钟瑞春), Hang Z-Q(韩柱强), He L-Q(贺梁琼), Li Z(李忠), Zhuang W-J(庄伟建), Tang R-H(唐荣华). Application of SCoT molecular marker in genus Arachis. Acta Agron Sin (作物学报), 2010, 36(12): 2055–2061 (in Chinese with English abstract)



[12]Chen H(陈虎), He X-H(何新华), Luo C(罗聪), Gao M-P(高美萍), Zhu J-H(朱建华). The optimization of SCoT-PCR system of longan (Dimocarpus longan). Genom Appl Biol (基因组学与应用生物学), 2009, 28(5): 970–974 (in Chinese with English abstract)



[13]Luo C, He X H, Chen H, Hu Y, Ou S J. Genetic relationship and diversity of Mangifera indica L.: revealed through SCoT analysis. Genet Resour Crop Evol, 2012, 59: 1505–1515



[14]Yang C(杨翠). Anaiysis of Genetic Diversity Based on SCoT Markers in Sugarcane Germplasms. MS Thesis Agriculture and Forestry University, 2010. pp 34–38 (in Chinese with English abstract)



[15]Chen X-L(陈香玲), Li Y-R(李杨瑞), Yang L-T(杨丽涛), Wu J-M(吴建明), Luo C(罗聪), Xiong F-Q(熊发前), Yang L(杨柳). cDNA-SCoT differential display of cold resistance related genes in sugarcane under low temperature stress. Biotech Bull (生物技术通报), 2010, (8): 120–124 (in Chinese with English abstract)



[16]Wu J-M(吴建明), Li Y-R(李杨瑞), Wang A-Q(王爱勤), Yang L(杨柳), Yang L-T(杨丽涛). Differential expression of gibberellin-induced genes for stalk elongation of sugarcane analyzed with cDNA-SCoT. Acta Agron Sin (作物学报), 2010, 36(11): 1883–1890 (in Chinese with English abstract)



[17]Ying X-M(应雄美), Cai Q(蔡青), Bi Y(毕艳), Liu X-L(刘新龙), Ma L(马丽), Mao J(毛钧), Lu X(陆鑫). Comparision between two sugarcane genome DNA extraction methods. Sugar Crops China (中国糖料), 2009, (4): 22–23 (in Chinese with English abstract)



[18]Pan Y B, Grisham M P, Burner D M, Damann K E, Wei Q. A polymerase chain reaction protocol for the detection of Clavibacter xyli subsp. xyli, the causal bacterium of ratoon stunting disease. Plant Dis, 1998, 82: 258–290



[19]Luo C, He X H, Chen H, Ou S J, Gao M P. Analysis of diversity and relationships among mango cultivars using start codon targeted (SCoT) markers. Biochem Syst Ecol, 2010, 38: 1176–1184



[20]Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P,Hudson S A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl T M, Terryn N, Gielen J, Villarroel R, De Clerck R, van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian K D, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones J D G, ,Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes H W, Klosterman S, Schueller C, Chalwatzis N. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 1998, 391: 485–488



[21]Bachem C W B, Hoeven R S, van der Bruijn S M, de Vreugdenhil D, Zabeau M, Visser R G E. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP analysis of gene expression during potato tuber development. Plant J, 1996, 9: 745–753



[22]Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967–97l



[23]Schena M, Shalon D, Davis R W, Patrick O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270: 467–470



[24]Chen R-P(陈荣平), Liu L(刘磊), Wan X-Q(万秀清), Qiu E-J(邱恩建), Wang C-J(王春军), Song B-G(宋宝刚), Yan P-Q(颜培强), Yang T-Z(杨铁钊). cDNA-AFLP analysis of differentially expressed genes in tobacco infected by TMV. Acta Agron Sin (作物学报), 2012, 38(1): 62–70 (in Chinese with English abstract)



[25]Que Y-X(阙友雄), Xu L-P(许莉萍), Chen R-K(陈如凯). Isolation and identification of differentially expressed genes in sugarcane infected by Ustilago scitaminea. Acta Agron Sin (作物学报), 2009, 35(3): 452–458 (in Chinese with English abstract)



[26]Que Y-X(阙友雄), Xu L-P(许莉萍), Lin J-W(林剑伟), Xu J-S(徐景升), Zhang J-S(张积森), Zhang M-Q(张木清), Chen R-K(陈如凯). Application of E. arundinaceus cDNA microarray in the study of differentially expressed genes induced by U. scitaminea. Acta Agron Sin (作物学报), 2009, 35(5): 940–945 (in Chinese with English abstract)



[27]Oloriz M I, Gil V, Rojas L, Portal O, Izquierdo Y, Jiménez E, Höfte M. Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling. Plant Cell Rep, 2012, 31: 955–969



[28]Valpuesta V, Lange N E, Guerrero C, Reid M S. Up-regulation of cysteine protease accompanies the ethylene-insensitive senescence of daylily (Hemerocallis) flowers. Plant Mol Biol, 1995, 28: 575–582



[29]Jones J T, Mullet J E. Salt-and dehydration-inducible pea gene, Cyp15a, encodes a cell-protein with sequence similarity to cysteine proteases. Plant Mol Biol, 1995, 28: 1055–1065



[30]Linthorst H J M, van der Does C, Brederode F T, Bol J F. Circadian expression and induction by wounding of tobacco genes for cysteine proteinase. Plant Mol Biol, 1993, 21: 685–694



[31]Wang X(王雪), Duan Y-X(段玉玺), Chen L-J(陈立杰), Wang Y-Y(王媛媛). Correlation analysis of amino acids components in soybean cultivars root exudates and resistance to soybean cyst nematode. J. Shenyang Agric Univ (沈阳农业大学学报), 2008, 39(6): 677–681 (in Chinese with English abstract)



[32]Liang C, Brookhart G, Feng G H, Reeck GR, Kramer K J. Inhibition of digestive proteinases of stored grain coleoptera by oryzacystatin, a cysteine proteinase inhibitor from rice seed. FEBS Lett, 1991, 278: 139–142



[33]Masoud S A, Johnson L B, White F F, Reeck G R. Expression of a cysteine proteinase (Oryzacystatin-I) in transgenic tobacco plants. Plants Mol Biol, 1993, 21: 655–663



[34]Vain P, Worland B, Clarke M C, Richard G, Beavis M, Liu H, Kohli A, Leech M, Snape J, Christou P, Atkinson H. Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-IΔD86) for nematode resistance in transgenic rice plants. Theor Appl Genet, 1998, 96: 266–271



[35]Zhu G-L(朱广廉). Advance in the study on brassinosteroids. Plant Physiol Commun (植物生理学通讯), 1992, 28: 317–322 (in Chinese with English abstract)



[36]Sairam R K. Effect of homobrassinolide application on plang metabolism and grain yield under irrigated and moisture stress conditions of two wheat varieties. Plant Growth Regul, 1994, 14: 173–181



[37]Dong D-F(董登峰), Jiang L-G(江立庚), Nie C-R(聂呈荣). Effects of long-lasting brassinosteroid TS303 and propyl dihydrojasmonate on peanut resistance to drought. Pea Sci (花生学报), 2002, 31(3): 29–32 (in Chinese with English abstract)



[38]Wang N-J(王乃江), Zhao Z(赵忠), Li P(李鹏). The effect of NBR on photosynthesis and drought resistance of Prunus armeniaca×sibirica. Res Soil Water Conserv (水土保持研究), 2000, 7(1): 89–91 (in Chinese with English abstract)



[39]Risseeuw E P, Daskalchuk T E, Banks T W, Liu E. Protein interaction analysis of SCF ubiquit in E3 ligase subunits from Arabidopsis. Plant J, 2003, 34: 753–767



[40]Kipreose T, Paganom. The F-box protein family. Genome Biol, 2000, 1: 3002.1–3002.7



[41]Kong H Z, Leebens-Mack J, Ni W M, dePamphilis C W, Ma H. Highly heterogeneous rates of evolution in the SKP1 gene family in plants and anmials: functional and evolutionary implications. Mol Biol Evol, 2004, 21: 117–128



[42]Craig K L, Tyers M. The F-box: A new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduetion. Prog Biophys Mol Biol, 1999, 72: 299–328



[43]Kornitzer D, Raboy B, Kulka R G, Fink G R. Regulated degradation of the transcription factor Gcn4. EMBO J, 1994, 13: 6021–6030



[44]Zhang S, Sandal N, Polowick P L. Proliferating floral organs (PFO), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein. Plant J, 2003, 33: 607–619



[45]Hulbert S H, Webb C A, Smith S M, Sun Q. Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol, 2001, 39: 285–312



[46]Mago R, Nair S, Mohann M. Resistance gene analogues from rice: cloning, sequencing and mapping. Theor Appl Genet, 1999, 99: 50–57



[47]Yu Y G, Buss G R, Maroof M A S. Isolation of a superfamily of candidate disease resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA, 1996, 93: 11751–11756



[48]Que Y-X(阙友雄), Xu L-P(许莉萍), Lin J-W(林剑伟), Zhang M-Q(张木清), Chen R-K(陈如凯). Cloning and analysis of NBS-LRR type disease resistance gene analogs in Erianthus arundinaceum. Chin J Trop Crops (热带作物学报), 2009, 30(2): 192–197 (in Chinese with English abstract)



[49]Que Y-X(阙友雄), Xu L-P(许莉萍), Zhang M-Q(张木清), Xu J-S(徐景升), Zhang J-S(张积森), Chen R-K(陈如凯). Cloning and expression analysis of an NBS-LRR type gene from sugarcane. Acta Agron Sin (作物学报), 2009, 35(6): 1161–1166 (in Chinese with English abstract)

[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[5] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[6] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[7] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[8] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[9] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[10] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[11] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[12] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
[13] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[14] 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613.
[15] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!