作物学报 ›› 2013, Vol. 39 ›› Issue (11): 2046-2054.doi: 10.3724/SP.J.1006.2013.02046
李枝梅1,窦海鸥1,卫丹丹1,孟庆伟1,CHEN Tony Huihuang2,杨兴洪1,*
LI Zhi-Mei1,DOU Hai-Ou1,WEI Dan-Dan1,MENG Qing-Wei1,CHEN Tony Huihuang2,YANG Xing-Hong1,*
摘要:
[1]Finaka A, Cuendet A F, Maathuis F J H, Saidi Y, Goloubinoff P. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell, 2012, 24: 3333–3348[2]Wang D-M(王冬梅), Xu X-Y(许向阳), Li J-F(李景富). The research progress of heat resistance in tomato. China Veg (中国蔬菜), 2003, 2: 58–60 (in Chinese)[3]Chen T H H, Murata N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ, 2011, 34: 1–20[4]Park E J, Jekni? Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen T H H. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J, 2004, 40: 474–487[5]Kathuria H, Giri J, Nataraja K N, Murata N, Udayakumar M, Tyagi A K. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J, 2009, 7: 512–526[6]Yang X H, Liang Z, Wen X G, Lu C M. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol, 2008, 66: 73–86[7]Yang X H, Liang Z, Lu C M. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol, 2005, 138: 2299–2309[8]Yang X H, Wen X G, Gong H M, Lu Q T, Yang Z P, Tang Y L, Liang Z, Lu C M. Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta, 2007, 225: 719–733[9]Li S F, Li F, Wang J W, Zhang W, Meng Q W, Chen T H H, Murata N, Yang X H. Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell Environ, 2011, 34: 1931–1943[10]Park E J, Jekni? Z, Pino M T, Murata N, Chen T H H. Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ, 2007, 30: 994–1005[11]Rhodes D, Rich P J, Brunk D G, Ju G C, Rhodes J C, Pauly M H, Hansen L A. Development of two isogenic sweet corn hybrids differing for glycinebetaine content. Plant Physiol, 1989, 91: 1112–1121[12]Kooten O, Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res, 1990, 25: 147–150[13]Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol, 1977, 59: 411–416[14]Zhao S-J(赵世杰), Xu C-C(许长成), Zou Q(邹琦), Meng Q-W(孟庆伟). Improvements of method for measurement of malondialdehvde in plant tissues. Plant Physiol Commun (植物生理学通讯), 1991, 30(3): 207–210 (in Chinese)[15]Clarke S M, Mur L A J, Wood J E, Scott I M. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J, 2004, 38: 432–447[16]Aebi H. Catalase in vitro. Method Enzymol, 1984, 105:121–126[17]Giannopolitis G N, Reis S K. Superoxide dismutase I. occurrence in higher plants. Plant Physiol, 1977, 59: 309–315[18]Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol, 1992, 98: 1222–1227[19]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867–880[20]Zhang L X, Paakkarinen V, Van Wijk K J, Aro E M. Cotranslational assembly of the D1 protein into photosystem II. J Biol Chem, 1999, 274: 16062–16067[21]Zhang Q Y, Wang L Y, Kong F Y, Deng Y S, Li B, Meng Q W. Constitutive accumulation of zeaxanthin in tomato alleviates salt stress-induced photoinhibition and photooxidation. Physiol Plant, 2012, 146: 363–373[22]Zhao S-J(赵世杰), Zou Q(邹琦), Zheng G-S(郑国生). The study of the method of modulation determination of chloroplast pigment in tobacco. Acta Tab Sin (中国烟草), 1993, 3: 17–19 (in Chinese with English abstract)[23]Callahan F E, Ghirardi M L, Sopory S K, Mehta A M, Edelman M, Mattoo A K. A novel metabolic from of the 32kDa-D1 protein in the grana-localized reaction center of photosystem II. J Biol Chem, 1990, 265: 15357–15360[24]Guo J-W(郭军伟), Wei H-M(魏慧敏), Wu S-F(吴守锋), Du L-F(杜林方). Effects of low temperature on the distribution of excitation energy in photosystem and the phosphorylation of thylakoid membrane proteins in rice. Acta Biophys Sin (生物物理学报), 2006, 22(3): 197–202 (in Chinese)[25]Chen J-M(陈建明), Yu X-P(俞晓平), Cheng J-A(程家安). The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses. Acta Agric Zhejiangensis (浙江农业学报), 2006, 18(1): 51–55 (in Chinese with English abstract)[26]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Plant Biol, 2004, 55(1): 373–399[27]McAinsh M R, Clayton H, Mansfield T A, Hetherington A M. Changes in stomatal behavior and guard cell cytosolic free calcium inresponse to oxidative stress. Plant Physiol, 1996, 111: 1031–1042[28]Lee S, Choi H, Suh S, Doo I-S, Oh K-Y, Choi E J, Schroeder Taylor A T, Low P S, Lee Y. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol, 1999, 121: 147–152[29]Wang Q, Xu W, Xue Q, Su W. Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity. J Zhejiang Univ-Sci B, 2010, 11: 851–861[30]Heber U, Bukhov N G, Shuvalov V A, Kobayashi Y, Lange O L. Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens. J Exp Bot, 2001, 52: 1999–2006[31]Allakhverdiev S, Los D, Mohanty P, Nishiyama Y, Murata N. Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta, 2007, 1767: 1363–1371[32]Ohnishi N, Murata N. Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in synechococcus sp. PCC 7942. Plant Physiol, 2006, 141: 758–765[33]Guo Y P, Zhou H F, Zhang L C. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci Hort, 2006, 108: 260–267[34]Alia, Kondo Y, Sakamoto A, Nonaka H, Hayashi H, Saradhi P P, Chen T H H, Murata N. Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol, 1999, 40: 279–288[35]Park E J, Jeknic Z, Chen T H H, Murata N. The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato. Plant Biotechnol J, 2007, 5: 422–430[36]Prasad T K, Anderson M D, Martin B A, Stewart C R. Evidence for chilling-Induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 1994, 6: 65–74[37]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405–410[38]Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant, 2008, 133: 481–489 |
[1] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[2] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[3] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[4] | 刘震宇,王桂霞,李丽楠,蔡泽洲,梁潘潘,吴莘玲,张祥,陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制[J]. 作物学报, 2020, 46(3): 440-447. |
[5] | 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484. |
[6] | 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135. |
[7] | 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828. |
[8] | 赵立娜,刘子会,段硕楠,张园园,李国良,郭秀林. 小麦热激转录因子基因TaHsfB2d的克隆和特性及其对耐热性的调控[J]. 作物学报, 2018, 44(01): 53-62. |
[9] | 赵立娜.段硕楠.张华宁.郭秀林.李国良. 玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析[J]. 作物学报, 2017, 43(07): 1021-1029. |
[10] | 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574. |
[11] | 衡丽,李亚兵,胡大鹏,王桂霞,吕春花,张祥,陈源,陈德华. 高温胁迫对Bt棉蕾中杀虫蛋白含量及氮代谢的影响[J]. 作物学报, 2016, 42(09): 1374-1380. |
[12] | 王亚梁**,张玉屏**,朱德峰*,向镜,武辉,陈惠哲,张义凯. 水稻穗分化期高温胁迫对颖花退化及籽粒充实的影响[J]. 作物学报, 2016, 42(09): 1402-1410. |
[13] | 张英华,杨佑明,曹莲,郝杨凡,黄菁,李金鹏,姚得秀,王志敏*. 灌浆期高温对小麦旗叶与非叶器官光合和抗氧化酶活性的影响[J]. 作物学报, 2015, 41(01): 136-144. |
[14] | 江文文,尹燕枰,王振林,李勇,杨卫兵,彭佃亮,杨东清,崔正勇,卢昆丽,李艳霞. 花后高温胁迫下氮肥追施后移对小麦产量及旗叶生理特性的影响[J]. 作物学报, 2014, 40(05): 942-949. |
[15] | 张祖建,王晴晴,郎有忠,王春哥,朱庆森,杨建昌. 水稻抽穗期高温胁迫对不同品种受粉和受精作用的影响[J]. 作物学报, 2014, 40(02): 273-282. |
|