欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 2046-2054.doi: 10.3724/SP.J.1006.2013.02046

• 耕作栽培·生理生化 • 上一篇    下一篇

codA基因提高番茄植株的耐热性

李枝梅1,窦海鸥1,卫丹丹1,孟庆伟1,CHEN Tony Huihuang2,杨兴洪1,*   

  1. 1山东农业大学生命科学学院 / 作物生物学国家重点实验室,山东泰安 271018; 2 Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
  • 收稿日期:2013-02-26 修回日期:2013-06-24 出版日期:2013-11-12 网络出版日期:2013-08-12
  • 通讯作者: 杨兴洪, E-mail: xhyang@sdau.edu.cn, Tel: 0538-8246167
  • 基金资助:

    本研究由国家基础研究发展计划(973计划)项目(2009CB118500),国家高技术研究发展计划(863计划)项目(2012AA10A309),国家自然科学基金项目(30970229)和教育部高校博士点基金(20103702110007)资助。

CodA Transgenic Tomato Plants Enhance Tolerance to High Temperature Stress

LI Zhi-Mei1,DOU Hai-Ou1,WEI Dan-Dan1,MENG Qing-Wei1,CHEN Tony Huihuang2,YANG Xing-Hong1,*   

  1. 1State Key Laboratory of Crop Biology / College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; 2 Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
  • Received:2013-02-26 Revised:2013-06-24 Published:2013-11-12 Published online:2013-08-12
  • Contact: 杨兴洪, E-mail: xhyang@sdau.edu.cn, Tel: 0538-8246167

摘要:

以野生型番茄(cv. Moneymaker)和转codA番茄为材料,用不同温度(253035404550)分别处理2 h,测定叶片净光合速率(Pn)PSII最大光化学效率(Fv/Fm)、过氧化氢(H2O2)含量、丙二醛(MDA)含量、相对电导率(REC)和抗氧化酶活性等生理指标;42高温处理036 h后,检测热响应基因的表达量以及D1蛋白的含量,研究高温胁迫对上述参数的影响,探讨转codA基因提高番茄叶片耐热性的机制。。结果表明,高温胁迫下,转codA基因番茄叶片PnFv/Fm的抑制程度明显低于野生型H2O2MDA的积累量以及REC均低于野生型,而且明显增强了过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)的活性。此外,转codA基因番茄叶片中抗氧化酶基因和热胁迫基因的表达水平均高于野生型,而D1蛋白的降解水平低于野生型。转codA基因番茄体内合成的甜菜碱提高了转基因番茄的耐热性,这与提高和维持较高的抗氧化酶活性、促进热激响应基因的表达及减缓D1蛋白的降解等有关。

关键词: codA基因, 番茄, 高温胁迫, 耐热性, 甜菜碱

Abstract:

The effects of codA gene on photosynthesis, activities of antioxidative enzymes, the expression of the heat response genes and the accumulation of D1 protein 50℃ respectively for two hours, then net photosynthetic rate (Pn), the maximal efficiency of PSII photochemistry (Fv/Fm), hydrogen peroxide (H2O2) content, malondialdehyde (MDA) content, relative electric conductivity (REC) and activities of antioxidativeenzymes were detected. After 42 heat stress for 0, 3, 6 hours, the expressions ofantioxidant enzyme genes and heat stress genes and the accumulation of the D1 protein were also determined. The results demonstrated that under high temperature stress, the inhibition degree of Pn and Fv/Fm in codA transgenic tomato plants was lower than that in wild type plants. The accumulation of H2O2, MDA and REC in codA transgenic tomato plants was less than that in wild type plants. And codA transgenic tomato plants also greatly enhanced the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX). Moreover, the expression levels of antioxidant genes and heat response genes in codA transgenic tomato plants was higher than those in wild type plants and the degradation degree of D1 protein in codA transgenic tomato plants were lower than that in wild type plants. It indicated that codA transgenic tomato plants enhance thermotolerance via maintaining higher activities of antioxidant enzymes, accelerating the expression of heat response genes and reducing the degradation of D1 protein. in tomato leaf under different temperature stresses were investigated to reveal the mechanism of thermotolerance in codA-transgenic tomato plants. The wild type (cv. Moneymaker) and codA transgenic tomato plants were treated with 25, 30, 35, 40, 45, and

Key words: codA gene, Tomato, High temperature stress, Thermotolerance, Glycinebetaine

[1]Finaka A, Cuendet A F, Maathuis F J H, Saidi Y, Goloubinoff P. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell, 2012, 24: 3333–3348



[2]Wang D-M(王冬梅), Xu X-Y(许向阳), Li J-F(李景富). The research progress of heat resistance in tomato. China Veg (中国蔬菜), 2003, 2: 58–60 (in Chinese)



[3]Chen T H H, Murata N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ, 2011, 34: 1–20



[4]Park E J, Jekni? Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen T H H. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J, 2004, 40: 474–487



[5]Kathuria H, Giri J, Nataraja K N, Murata N, Udayakumar M, Tyagi A K. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J, 2009, 7: 512–526



[6]Yang X H, Liang Z, Wen X G, Lu C M. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol, 2008, 66: 73–86



[7]Yang X H, Liang Z, Lu C M. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol, 2005, 138: 2299–2309



[8]Yang X H, Wen X G, Gong H M, Lu Q T, Yang Z P, Tang Y L, Liang Z, Lu C M. Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta, 2007, 225: 719–733



[9]Li S F, Li F, Wang J W, Zhang W, Meng Q W, Chen T H H, Murata N, Yang X H. Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell Environ, 2011, 34: 1931–1943



[10]Park E J, Jekni? Z, Pino M T, Murata N, Chen T H H. Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ, 2007, 30: 994–1005



[11]Rhodes D, Rich P J, Brunk D G, Ju G C, Rhodes J C, Pauly M H, Hansen L A. Development of two isogenic sweet corn hybrids differing for glycinebetaine content. Plant Physiol, 1989, 91: 1112–1121



[12]Kooten O, Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res, 1990, 25: 147–150



[13]Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol, 1977, 59: 411–416



[14]Zhao S-J(赵世杰), Xu C-C(许长成), Zou Q(邹琦), Meng Q-W(孟庆伟). Improvements of method for measurement of malondialdehvde in plant tissues. Plant Physiol Commun (植物生理学通讯), 1991, 30(3): 207–210 (in Chinese)



[15]Clarke S M, Mur L A J, Wood J E, Scott I M. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J, 2004, 38: 432–447



[16]Aebi H. Catalase in vitro. Method Enzymol, 1984, 105:121–126



[17]Giannopolitis G N, Reis S K. Superoxide dismutase I. occurrence in higher plants. Plant Physiol, 1977, 59: 309–315



[18]Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol, 1992, 98: 1222–1227



[19]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867–880



[20]Zhang L X, Paakkarinen V, Van Wijk K J, Aro E M. Cotranslational assembly of the D1 protein into photosystem II. J Biol Chem, 1999, 274: 16062–16067



[21]Zhang Q Y, Wang L Y, Kong F Y, Deng Y S, Li B, Meng Q W. Constitutive accumulation of zeaxanthin in tomato alleviates salt stress-induced photoinhibition and photooxidation. Physiol Plant, 2012, 146: 363–373



[22]Zhao S-J(赵世杰), Zou Q(邹琦), Zheng G-S(郑国生). The study of the method of modulation determination of chloroplast pigment in tobacco. Acta Tab Sin (中国烟草), 1993, 3: 17–19 (in Chinese with English abstract)



[23]Callahan F E, Ghirardi M L, Sopory S K, Mehta A M, Edelman M, Mattoo A K. A novel metabolic from of the 32kDa-D1 protein in the grana-localized reaction center of photosystem II. J Biol Chem, 1990, 265: 15357–15360



[24]Guo J-W(郭军伟), Wei H-M(魏慧敏), Wu S-F(吴守锋), Du L-F(杜林方). Effects of low temperature on the distribution of excitation energy in photosystem and the phosphorylation of thylakoid membrane proteins in rice. Acta Biophys Sin (生物物理学报), 2006, 22(3): 197–202 (in Chinese)



[25]Chen J-M(陈建明), Yu X-P(俞晓平), Cheng J-A(程家安). The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses. Acta Agric Zhejiangensis (浙江农业学报), 2006, 18(1): 51–55 (in Chinese with English abstract)



[26]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Plant Biol, 2004, 55(1): 373–399



[27]McAinsh M R, Clayton H, Mansfield T A, Hetherington A M. Changes in stomatal behavior and guard cell cytosolic free calcium inresponse to oxidative stress. Plant Physiol, 1996, 111: 1031–1042



[28]Lee S, Choi H, Suh S, Doo I-S, Oh K-Y, Choi E J, Schroeder Taylor A T, Low P S, Lee Y. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol, 1999, 121: 147–152



[29]Wang Q, Xu W, Xue Q, Su W. Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity. J Zhejiang Univ-Sci B, 2010, 11: 851–861



[30]Heber U, Bukhov N G, Shuvalov V A, Kobayashi Y, Lange O L. Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens. J Exp Bot, 2001, 52: 1999–2006



[31]Allakhverdiev S, Los D, Mohanty P, Nishiyama Y, Murata N. Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta, 2007, 1767: 1363–1371



[32]Ohnishi N, Murata N. Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in synechococcus sp. PCC 7942. Plant Physiol, 2006, 141: 758–765



[33]Guo Y P, Zhou H F, Zhang L C. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci Hort, 2006, 108: 260–267



[34]Alia, Kondo Y, Sakamoto A, Nonaka H, Hayashi H, Saradhi P P, Chen T H H, Murata N. Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol, 1999, 40: 279–288



[35]Park E J, Jeknic Z, Chen T H H, Murata N. The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato. Plant Biotechnol J, 2007, 5: 422–430



[36]Prasad T K, Anderson M D, Martin B A, Stewart C R. Evidence for chilling-Induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 1994, 6: 65–74



[37]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405–410



[38]Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant, 2008, 133: 481–489

[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[3] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[4] 刘震宇,王桂霞,李丽楠,蔡泽洲,梁潘潘,吴莘玲,张祥,陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制[J]. 作物学报, 2020, 46(3): 440-447.
[5] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[6] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[7] 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828.
[8] 赵立娜,刘子会,段硕楠,张园园,李国良,郭秀林. 小麦热激转录因子基因TaHsfB2d的克隆和特性及其对耐热性的调控[J]. 作物学报, 2018, 44(01): 53-62.
[9] 赵立娜.段硕楠.张华宁.郭秀林.李国良. 玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析[J]. 作物学报, 2017, 43(07): 1021-1029.
[10] 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574.
[11] 衡丽,李亚兵,胡大鹏,王桂霞,吕春花,张祥,陈源,陈德华. 高温胁迫对Bt棉蕾中杀虫蛋白含量及氮代谢的影响[J]. 作物学报, 2016, 42(09): 1374-1380.
[12] 王亚梁**,张玉屏**,朱德峰*,向镜,武辉,陈惠哲,张义凯. 水稻穗分化期高温胁迫对颖花退化及籽粒充实的影响[J]. 作物学报, 2016, 42(09): 1402-1410.
[13] 张英华,杨佑明,曹莲,郝杨凡,黄菁,李金鹏,姚得秀,王志敏*. 灌浆期高温对小麦旗叶与非叶器官光合和抗氧化酶活性的影响[J]. 作物学报, 2015, 41(01): 136-144.
[14] 江文文,尹燕枰,王振林,李勇,杨卫兵,彭佃亮,杨东清,崔正勇,卢昆丽,李艳霞. 花后高温胁迫下氮肥追施后移对小麦产量及旗叶生理特性的影响[J]. 作物学报, 2014, 40(05): 942-949.
[15] 张祖建,王晴晴,郎有忠,王春哥,朱庆森,杨建昌. 水稻抽穗期高温胁迫对不同品种受粉和受精作用的影响[J]. 作物学报, 2014, 40(02): 273-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!