欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (09): 1402-1410.doi: 10.3724/SP.J.1006.2016.01402

• 研究简报 • 上一篇    下一篇

水稻穗分化期高温胁迫对颖花退化及籽粒充实的影响

王亚梁**,张玉屏**,朱德峰*,向镜,武辉,陈惠哲,张义凯   

  1. 中国水稻研究所 / 水稻生物学国家重点实验室,浙江杭州 310006
  • 收稿日期:2016-02-18 修回日期:2016-06-20 出版日期:2016-09-12 网络出版日期:2016-06-27
  • 通讯作者: 朱德峰, E-mail: cnrice@qq.com, Tel: 13388608096
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(201203029)和国家现代农业产业技术体系建设专项(CARS-01-09B)资助。

Effect of Heat Stress on Spikelet Degeneration and Grain Filling at Panicle Initiation Period of Rice

WANG Ya-Liang**,ZHANG Yu-Ping**,ZHU De-Feng*,XIANG Jing,WU Hui,CHEN Hui-Zhe,ZHANG Yi-Kai   

  1. China National Rice Research Institute / State Key Laboratory of Rice Biology, Hangzhou 310006, China
  • Received:2016-02-18 Revised:2016-06-20 Published:2016-09-12 Published online:2016-06-27
  • Contact: 朱德峰, E-mail: cnrice@qq.com, Tel: 13388608096
  • Supported by:

    This study was supported by Special Fund for Agro-Scientific Research in the Public Interest (201203029) and the China Agriculture Research System (CARS-01-09B).

摘要:

为明确水稻穗分化期高温胁迫对颖花退化和籽粒充实的影响,选用耐热性品种黄华占和热敏感性品种丰两优6号进行人工气候箱盆栽试验,于倒一叶心叶抽出时(花粉母细胞形成至减数分裂期)进行高温处理(10:00—15:00,40℃) 1 d、3 d、5 d、7 d、9 d,并以同时段适温处理(10:00—15:00,32℃)为参考,自然条件下生长的植株为对照(CK),分析不同持续天数高温对颖花退化、花器官发育和籽粒充实的影响。结果表明:(1)随着处理天数的增加,高温加剧颖花退化,与适温处理及CK相比,高温处理9 d黄华占颖花退化率增加45.8%和62.9%,丰两优6号颖花退化率增加81.7%和136.1%,丰两优6号增加幅度大于黄华占。(2)高温处理1~3 d降低花粉活力,5~9 d抑制花药充实。花药发育不良,花粉形成受阻是导致结实率显著下降的原因,两品种趋势一致。(3)高温处理缩短颖花长度,降低籽粒充实性,使千粒重显著下降,热敏感性品种丰两优6号下降幅度大于耐热性品种黄华占,籽粒充实在5 d以上高温处理下降显著。研究说明倒一叶生长时期高温胁迫影响穗生长发育,生产中需加强相应栽培措施的调控。

关键词: 水稻, 高温胁迫, 颖花退化, 花药发育, 籽粒结实

Abstract:

Pot experiment was conducted to investigate the effects of heat stress on rice spikelets degeneration and grain filling at panicle initiation stage. A tolerant (Huanghuazhan) and a susceptible (Fengliangyou 6) cultivars were treated in phytotron with high temperature (10:00–15:00, 40) and normal temperature (10:00–15:00, 32) for one, three, five, seven, and nine days at last leaf emergence stage, with these grown under natural condition as control. The results indicated that the ratio of spikelet degeneration increased greatly with increasing heat-treating time. The ratio of spikelet degeneration of Huanghuazhan increased 45.8% and 62.9% after nine days under high temperature as compared with normal temperature treatment and control, and the ratio of Fengliangyou6 increased 81.7% and 136.1% in the same treatment, showing higher ratio of spikelet degeneration in Fengliangyou6 than Huanghuazhan. The pollen activity significantly decreased after one day under high temperature stress, and anther formation significantly inhibited after five days under high temperature stress. Bad anther formation and poor pollen activity under heat stress resulting in seed-setting rate significantly decreased. Spikelet length and grain filling of two cultivars decreased due to heat stress effect, resulting in a significant reduction of grain weight, with a larger reduction rate in Fengliangyou6 than in Huanghuazhan. Grain filling reduced significantly after five days of high temperature treatment. According to the study, heat stress at last leaf emergence stage may sharply decrease rice yield, and corresponding cultivation measures should be strengthened in production.

Key words: Rice, Heat stress, Spikelet degeneration, Anther formation, Grain filling

[1]李勇, 杨晓光, 叶清, 陈阜. 全球气候变暖对中国种植制度可能影响: IX. 长江中下游地区单双季稻高低温灾害风险及其产量影响. 中国农业科学, 2013, 46: 3997–4006
Li Y, Yang X G, Ye Q, Chen F. The possible effects of global warming on cropping systems in China: IX. The risk of high and low temperature disasters for single and double rice and its impacts on rice yield in the Middle-lower Yangtze plain. Sci Agric Sin, 2013, 46: 3997–4006 (in Chinese with English abstract)
[2]谢晓金, 李秉柏, 王琳, 戴秦如, 申双和. 长江中下游地区高温时空分布及水稻花期的避害对策. 中国农业气象, 2010, 31: 144–150
Xie X J, Li B B, Wang L, Dai Q R, Shen S H. Spatial and temporal distribution of high temperature and strategists rice florescence harm in the lower-middle reaches of Yangtze River. Chin J Agrometeorol, 2010, 31: 144–150 (in Chinese with English abstract)
[3]谢志清, 杜银, 高苹, 曾燕. 江淮流域水稻高温热害灾损变化及应对策略. 气象, 2013, 39: 774–784
Xie Z Q, Du Y, Gao P, Zeng Y. Impact of high-temperature on single cropping rice over Yangtze-Huaihe river valley and response measures. Meteorol Monthly, 2013, 39: 774–784 (in Chinese with English abstract)
[4]IPCC. Climate Change 2013: the Physical Science Basis. Oslo: Inter Government Panel on Climate Change, 2013
[5]Das S, Krishnan P, Nayak M, Ramakrishnan B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ Exp Bot, 2014, 101: 36–46  
[6]Rang Z W, Jagadish S V K, Zhou Q M, Craufurd P Q, Heuer S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environ Exp Bot, 2011, 70: 58–65
[7]张桂莲, 张顺堂, 肖浪涛, 唐文帮, 肖应辉, 陈立云. 抽穗开花期高温胁迫对水稻花药、花粉粒及柱头生理特性的影响. 中国水稻科学, 2014, 28: 155–166
Zhang G L, Zhang S T, Xiao L T, Tang W B, Xiao Y H, Chen L Y. Effect of high temperature stress on physiological characteristics of anther, pollen and stigma of rice during heading-flowering stage. Chin J Rice Sci, 2014, 28: 155–166 (in Chinese with English abstract)
[8]Shrivastava P R, Saxena P, Xalxo M S, Verulkar S B. Effect of high temperature at different growth stages on rice yield and grain quality traits. J Rice Res, 2012, 5: 29–42 
[9]Prasad P V V, Boote K J, Allen L H. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol, 2006, 139: 237–251
[10]唐恬, 金荣花, 彭相瑜, 牛若芸. 2013年夏季我国南方区域性高温天气的极端性分析. 气象, 2014, 40: 1207–1215
Tang T, Jin L H, Peng X Y, Niu N Y. Analysis on extremely high temperature over southern china in summer 2013. Meteorol Monthly, 2014, 40: 1207–1215 (in Chinese with English abstract)
[11]邓运, 田小海, 吴晨阳, 松井勤, 肖波. 热害胁迫条件下水稻花药发育异常的早期特征.中国生态农业学报, 2010, 18: 377–383
Deng Y, Tian X H, Wu C Y, Matsu T, Xiao B. Early signs of heat stress-induced abnormal development of anther in rice. Chin J Eco-agric, 2010, 18: 377–383 (in Chinese with English abstract)
[12]曹云英, 段骅, 杨立年, 王志琴, 周少川, 杨建昌. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因. 作物学报, 2008, 34: 2134–2142
Cao Y Y, Duan H, Yang L N, Wang Z Q, Zhou S C, Yang J C. Effect of heat-stress meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism. Acta Agron Sin, 2008, 34: 2134–2142 (in Chinese with English abstract)
[13]Abiko M, Akibayashi K, Sakata T, Kimura M, Kihara M, Itoh K, Asamizu E, Sato S, Takahashi H, Higashitani A. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sexual Plant Reproduction, 2005, 18: 91–100 
[14]Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi-Kobayashi M, Higashitani A. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Genet Genomics, 2007, 278: 31–42 
[15]王亚梁, 张玉屏, 曾研华, 武辉, 向镜, 陈惠哲, 张义凯, 朱德峰. 水稻穗分化期高温对颖花分化及退化的影响. 中国农业气象, 2015, 36: 724–731
Wang Y L, Zhang Y P, Zeng Y H, Wu H, Xiang X, Chen H Z, Zhang Y K, Zhu D F. Effect of high temperature stress on rice spikelet differentiation and degeneration during panicle initiation stage. Chin J Agrometeorol, 2015, 36: 724–731 (in Chinese with English abstract)
[16]杨弘远. 水稻生殖生物学. 杭州: 浙江大学出版社, 2005. pp 22–23
Yang H Y. Rice Reproduction Biology. Hangzhou: Zhejiang University Press, 2005. pp 22–23 (in Chinese)
[17]松岛省三著, 庞城译. 稻作理论与技术. 北京: 农业出版社, 1966. pp 75-76
Matsushima S. Theory and Technology of Rice Cultivation. Pang C, Trans. Beijing: Agriculture Press,1966. pp 75–76 (in Chinese)
[18]柳新伟, 孟亚利, 周治国, 曹卫星. 水稻颖花分化与退化的动态特征. 作物学报, 2005, 31: 451–455
Liu X W, Meng Y L, Zhou Z G, Cao W X. Dynamic characteristic of floret differentiation and degeneration in rice. Acta Agron Sin, 2005, 31: 451–455 (in Chinese with English abstract)
[19]杨洪建, 杨连新, 黄建晔, 刘红江, 董桂春, 颜士敏, 朱建国, 王余龙. FACE对武香粳14颖花分化与退化的影响. 作物学报, 2006, 32: 1076–1082
Yang H J, Yang L X, Huang J Y, Liu H J, Dong G C, Yan S M, Zhu J G, Wang Y L. Effect of free-air CO2 enrichment on spikelet differentiation and degeneration of Japonica rice(Oryza sativa L.) cultivar Wuxiangjing 14. Acta Agron Sin, 2006, 32: 1076–1082 (in Chinese with English abstract)
[20]戚华雄, 杜雪树, 李进波. 水稻颖花退化的遗传研究进展. 湖北农业科学, 2014, 53: 5905–5907
Qi H X, Du X S, Li J B. Genetic studies of floret degeneration in rice(Oryza sativa L.). Hubei Agric Sci, 2014, 53: 5905–5097 (in Chinese with English abstract)
[21]魏育明, 郑有良. 内源激素对小麦可育小花数的调控. 四川农业大学学报, 1998, 16: 289–293
Wei Y M, Zheng Y L. The regulation of phytohormone in determination of fertile floret number in wheat. J Sichuan Agric Univ, 1998, 16: 289–293 (in Chinese with English abstract)
[22]杨建昌, 刘凯, 张慎凤, 王学明, 王志琴, 刘立军. 水稻减数分裂期颖花中激素对水分胁迫的响应. 作物学报, 2008, 34: 111–118
Yang J C, Liu K, Zhang S F, Wang X M, Wang Z Q, Liu L J. Hormones in rice spikelets in responses to water stress during meiosis. Acta Agron Sin, 2008, 34: 111–118 (in Chinese with English abstract)
[23]Prasad P V V, Boote K J, Allen L H, Sheehy J E, Thomas J M G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res, 2006, 95: 398–411
[24]Mohammed A R, Tarpley L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agric For Meteorol, 2009, 149: 999–1008
[25]Matsui T, Omasa K, Horie T. High temperature at flowering inhibits swelling of pollen grains, a driving force thecae dehiscence in rice. Plant Prod Sci, 2000, 3: 430–434
[26]霍中洋, 叶全宝, 李华, 张洪程, 戴其根, 许轲. 水稻源库关系研究进展. 中国农学通报, 2002, 18(6): 72–77
Huo Z Y , Ye Q B, Li H, Zhang H C, Dai Q G, Xu K. Advances of research on source-sink relationship of rice. Chin Agric Sci Bull, 2002, 18(6): 72–77 (in Chinese with English abstract)
[27]陈惠哲. 水稻物质运转规律及其产量形成的研究. 中国农业科学院硕士学位论文, 北京, 2007
Chen H Z. Study on Matter Translation Characteristic and Yield Formation in Rice (Oryza sativa L.). MS. Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2007 (in Chinese with English abstract)
[28]张卫星. 超级稻品种穗生长发育和灌浆结实对水分亏缺的响应及其机理. 中国农业科学院博士学位论文, 北京, 2008
Zhang W X. Study on Response of Panicle Growth and Development, Grain Filling under Water Deficit and Its Mechanism in Super Rice (Oryza sativa L.) Varieties. Ph.D. Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2008 (in Chinese with English abstract)
[29]郑建初, 张彬, 陈留根, 杜群, 秦永生, 宋健, 张卫建. 抽穗期高温对水稻产量构成要素和稻米品质的影响及其基因型差异. 江苏农业科学, 2005, 21: 249–254
Zheng J C, Zhang B, Chen L G, Du Q, Qin Y S, Song J, Zhang W J. Genotypic differences in effects of high air temperature in field on rice yield component and grain quality during heading stage. Jiangsu J Agric Sci, 2005, 21: 249–254 (in Chinese with English abstract)
[30]王亚梁, 张玉屏, 朱德峰, 向镜, 陈惠哲, 张义凯. 水稻器官形态和干物质积累对穗分化不同时期高温的响应. 中国水稻科学, 2016, 30: 161-169
Wang Y L, Zhang Y P, Zhu D F, Xiang J, Chen H Z, Zhang Y K. Response of rice organ morphology and dry matter accumulation to high temperature at different panicle initiation stages. Chin J Rice Sci, 2006, 30: 161–169 (in Chinese with English abstract)
[31]上海植物生理研究所人工气候室. 高温对早稻开花结实的影响及其防治: II. 早稻开花期高温对开花结实的影响. 植物学报, 1976, 18: 323–329
Laboratory of Phytotron, Shanghai Institute of Plant Physiology. The influence of high temperature on the flowering and fruiting of high temperature on the flowering and fruiting of early rice and its control: II. The influence of high temperature on the flowering-fruiting of early rice during the flowering stage. Acta Bot Sin, 1976, 18: 323–329 (in Chinese with English abstract)
[32]熊洪, 冉茂林, 徐富贤, 洪松. 南方稻区再生稻研究进展及发展. 作物学报, 2000, 26: 297–304
Xiong H, Ran M L, Xu F X, Hong S. Achievements and developments of rationing rice in south of China. Acta Agron Sin, 2000, 26: 297–304 (in Chinese with English abstract)
[33]张彬, 郑建初, 黄山, 田云录, 彭兰, 卞新民, 张卫建. 抽穗期不同灌水深度下水稻群体与大气的温度差异. 应用生态学报, 2008, 19: 87–92
Zhang B, Zheng J C, Huang S , Tian Y L, Peng L, Bian X M, Zhang W J. Temperature differences of air-rice plant under different irrigated water depths at spiking stage. Chin J Appl Ecol, 2008, 19: 87–92 (in Chinese with English abstract)
[34]张彩霞. 水杨酸减轻水稻高温伤害的机理研究. 中国农业科学院硕士学位论文, 北京, 2015
Zhang C X. The Mechanism of Salicylic Acid in Alleviating Damage on the Rice Induced by Heat Stress. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!