欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (09): 1391-1401.doi: 10.3724/SP.J.1006.2016.01391

• 耕作栽培·生理生化 • 上一篇    下一篇

外源多胺对小麦小花退化的调控机制

吕晓康,温晓霞,廖允成,刘杨*   

  1. 西北农林科技大学农学院,陕西杨凌 712100
  • 收稿日期:2015-11-29 修回日期:2016-05-09 出版日期:2016-09-12 网络出版日期:2016-05-30
  • 通讯作者: 刘杨, E-mail: liuyang0328@126.com, Tel: 029-87082291
  • 基金资助:

    本研究由国家自然科学基金项目(31301260),国家科技支撑计划项目(2015BAD22B03-05)和中国博士后科学基金面上项目(2015M572604)资助。

Effect of ExogenousPolyamines on Mechanism of Floret Degeneration in Wheat

LÜ Xiao-Kang,WEN Xiao-Xia,LIAO Yun-Cheng,LIU Yang*   

  1. Agronomy College,Northwest A&F University, Yangling 712100, China
  • Received:2015-11-29 Revised:2016-05-09 Published:2016-09-12 Published online:2016-05-30
  • Contact: 刘杨, E-mail: liuyang0328@126.com, Tel: 029-87082291
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31301260), theNational Key Technology R&T Program of China (2015BAD22B03-05), and the China Postdoctoral Science Foundation (2015M572604).

摘要:

小麦穗粒数与小花退化密切相关,多胺是调控小花发育的一种重要植物生长调节剂。本研究利用小麦品种(系)双大1号(大穗型)和西农538 (小穗型),于小花退化阶段在穗部施用腐胺(Put)、亚精胺(Spd)和精胺(Spm),分析外源多胺对小麦小花退化的影响及其与内源激素、植株碳氮的关系。结果表明,外源SpdSpm显著抑制小花退化、提高了可孕小花数目,而Put加具有显著的负效应;并且多胺的调控具有明显的位置效应,对小穗上部弱势小花退化的调控效应显著大于下部强势小花。施用外源SpdSpm后,弱势小花中SpdSpm显著增加,同时玉米素+玉米素核苷(Z+ZR)含量及其与脱落酸(ABA)的比值也显著升高,而内源乙烯的释放速率降低,并且弱势小花中可溶性总糖和可溶性蛋白质含量显著提高。外源Put对弱势小花的控调效应与此相反,施用后弱势小花中PutABA含量以及内源ETH释放速率显著提高,而(Z+ZR)ABA比值和可溶性总糖含量降低。因此认为,多胺参与了对小麦小花退化的调控,其对小麦小花退化的调控与内源激素、植株碳氮代谢密切相关。

关键词: 多胺, 小麦, 小花退化, 激素, 可溶性总糖, 可溶性蛋白

Abstract:

Kernel number per spike has a close relationship with floret degeneration in wheat, which is regulated greatly by polyamines (PAs), one of important plant growth regulators. In this study, we applied exogenous spermine (Spm), spermidine (Spd) and putrescine (Put) to the young spikes of cultivars Shuangda 1 (large-spike type) and Xinong 538 (small-spike type) to investigate the effects of PAs on floret degeneration,endogenous hormones, and the carbon and nitrogen changes in wheat floret. The results indicated that exogenous Spd and Spm had similar effects on floret degeneration whereas exogenous Put was in function. In the treatments with external Spd and Spm applied, the floret degeneration was inhibited and the number of fertile floretsincreased significantly. In the external Put treatment, floret degeneration aggravated and the fertile floret number decreased significantly. Such influence by external PAswas different in upper and lower florets of a spike and the upper florets (inferior florets) showed greater effects than the lower ones (superior florets). The concerntrations of endogenous Spd and Spm, zeatin (Z) + zeatin ridoside (ZR),and the ratio of Z+ZR-to-abscisic acid (ABA)in inferior florets increased after applying exogenous Spd and Spm. However, the evolution rate of endogenous ethylene (ETH) in inferior floret decreased. As a result, the total soluble sugar and protein contents increased significantly in inferior floret. In contrast, exogenous Put showed reverse effects compared to Spd and Spm. Our results indicate that PAswere involved in the regulation of floret degeneration by changing the endogenous hormone concerntrations and the carbon and nitrogen metabolism in wheat plants.

Key words: Polyamine, Wheat, Floret degeneration, Hormone, Total soluble sugar, Soluble protein

[1] 王兆龙, 曹卫星, 戴廷波, 周琴. 不同穗型小麦品种小花发育与结实特性研究. 南京农业大学学报, 2000, 23(4): 9?12
Wang Z L, Cao W X, Dai T B, Zhou Q. Characteristics of floret development and grain set in three wheat genotypes of different spike sizes. J Nanjing Agric Uni, 2000, 23(4): 9?12 (in Chinese with English abstract)
[2] 倪英丽. 小麦小花发育差异性的生理基础及栽培措施调控研究. 山东农业大学博士学位论文, 山东泰安, 2013
Ni Y L. Differences in Physiological Basis of Floret Development and Response to Cultivation Regulation in Wheat. PhD Dissertation of Shandong Agricultural University, Tai’an, China, 2013 (in Chinese with English abstract)
[3] Serrago AR, Miralles DJ, Slafer GA. Floret fertility in wheat as affected by photoperiod during stem elongation and removal of spikelets at booting. Eur J Agron, 2008, 28: 301-308
[4] 王兆龙, 曹卫星, 戴廷波. 小麦小花两极分化中内源植物激素与糖氮含量的变化特征. 作物学报, 2001, 27: 447?452
   Wang Z L, Cao W X, Dai T B. Changes of endogenous plant hormones and soluble sugars and proteins during floret development and degeneration in wheat. Acta Agron Sin, 2001, 27: 447?452 (in Chinese with English abstract)
[5] Liu HP, Dong B H, Zhang Y Y, Liu Z P, Liu Y L. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci, 2004, 166: 1261?1267
[6] Tomosugi M, Ichihara K, Saito K. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor. Planta, 2006, 223: 349?358
[7] 武维华. 植物生理学(第2版). 北京: 科学出版社, 2008
   Wu W H. Plant Physiology (2nd Edition). Beijing: Science Press, 2008 (in Chinese)
[8] 田长恩, 梁承邺, 黄毓文, 刘鸿先. 水稻细胞质雄性不育系及其保持系幼穗发育过程中的多胺代谢. 植物生理学报, 1998, 24: 333?339
    Tian C E, Liang C Y, Huang S W, LIU H X. Metabolism of polyamines during the development of panicles in cytoplasmic male-sterile line and its maintainer line in Oryza sativa L. Acta PhytolSin, 1998, 24: 333?339 (in Chinese with English abstract)
[9] 田长恩, 梁承邺. 多胺对水稻CMS系及其保持系幼穗蛋白质、核酸和活性氧代谢的影响. 植物生理学报, 1999, 25: 222?228
    Tian C E, Liang C Y. Effect of polyamine on the metabolism of protein, DNA, RNA and activated oxygen in the panicles of CMS rice and its maintainer line. Acta Phytol Sin, 1999, 25: 222?228 (in Chinese with English abstract)
[10] 冯剑亚, 余炳果, 曹大铭. 光敏核不育水稻幼穗发育过程中多胺的变化. 南京农业大学学报, 1991, 14(1): 12?16
    Feng J Y, Yu B G, Cao D M. Changes of polyamines in young panicles of PGMR during their development.J Nanjing Agric Uni, 1991, 14(1): 12?16 (in Chinese with English abstract)
[11] 冯剑亚, 余炳果, 曹大铭. 乙烯利和氯化钻对光敏核不育水稻育性及幼穗中多胺和乙烯含量的影响. 南京农业大学学报, 1992, 15(2): 127?129
    Feng J Y, Yu B G, Cao D M. Effects of ethrel and cobalt chloride of fertility and polyamine and ethylene content of young panicles in PGMR. J Nanjing Agric Uni, 1992, 15(2): 127?129 (in Chinese with English abstract)
[12] Ma R, Zhang M, Li B, Du G, Wang J, Chen J. The effects of exogenous Ca2+ on endogenous polyamine levels and drought-resistant traits of spring wheat grown under arid conditions. J Arid Environ, 2005, 63: 177?190
[13] Biesaga KJ, Koscielniak J, Filek M, Krekule M J, Kubon M M. The effect of plant growth regulators and their interaction with electric current on winter wheat development. Acta Physiol Plant, 2010, 32: 987?995
[14] Yang JC, Zhang JH, Liu K, Wang Z Q, Liu L J. Abscisic Acid and Ethylene Interact in rice spikelets in response to water stress during meiosis. J Plant Growth Regul, 2007, 26: 318?328
[15] 王志敏, 王树安, 苏宝林. 乙烯对小麦小花发育和结实的影响. 种子, 1996, (2): 13?15
    Wang Z M, Wang S A, Su B L. The effect of ethylene on floret development and grain set in wheat. Seed, 1996, (2): 13?15 (in Chinese with English abstract)
[16] 王海永, 陈小文, 牛晓雪, 苏贺, 申婷婷, 董学会. 乙烯利对夏玉米果穗生长发育影响及生理机制探究. 玉米科学, 2014, 22(5): 64?70
    Wang H Y, Chen X W, Niu X X, Su H, Shen T T, Dong X H. Influence of ethephon on maize cluster growth and development and the physiological mechanism. J Maize Sci, 2014, 22(5): 64?70 (in Chinese with English abstract)
[17] 杨建昌, 刘凯, 张慎凤, 王学明, 王志琴, 刘立军. 水稻减数分裂期颖花中激素对水分胁迫的响应. 作物学报, 2008, 34: 111?118
    Yang J C, Liu K, Zhang S F, Wang X M, Wang Z Q, Liu L J. Hormones in rice spikelets in responses to water stress during meiosis. Acta Agron Sin, 2008, 34: 111?118 (in Chinese with English abstract)
[18] Huang S, Cerny R E, Qi Y L, Bhat D, Aydt C M, Hanson D D, Malloy K P, Ness L A. Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol, 2003, 131: 1270?1282
[19] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741?745
[20] Pieruzzi FP, Dias LLC, Balbuena TS, Santa-Catarina C, Dos S A L, Floh E I. Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Ann Bot, 2011, 108: 337?345
[21] Upreti KK, Murti GSR. Response of grape rootstocks to salinity: changes in root growth, polyamines and abscisic acid. Biol Plant, 2010, 54: 730?734
[22] Yang J C, Cao YY, Zhang H, Liu L, Zhang J H. Involvement of polyamines in the post-anthesis development of inferior an superior spikelets in rice. Planta, 2008, 228: 137?149
[23] 刘俊, 吉晓佳, 刘友良. 检测植物组织中多胺含量的高效液相色谱法. 植物生理学通讯, 2008, 38: 596?598
Liu J, Ji X J, Liu Y L. High performance liquid chromatography method for measuring polyamine content in plant tissue. Plant Physiol Commun, 2008, 38: 596?598 (in Chinese with English abstract)
[24] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 2001, 127: 315?323
[25] 张蜀秋. 植物生理学实验技术教程. 北京: 科学出版社, 2011
    Zhang S Q. Techniques for Plant Physiology Experiment. Beijing: Science Press, 2011 (in Chinese)
[26] Ning H F, Liu Z H, Wang Q S, Lin Z M, Chen S J, Li G H, Wang S H, Ding Y F. Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes. J Cereal Sci, 2009, 50: 49?55
[27] 张木清, 陈如凯. 作物抗旱分子生理与遗传改良. 北京: 科学出版社, 2005. pp 172?174
Zhang M Q, Chen R K. The Molecular Physiological Mechanism and Genetic Improvement for Drought Resistance of Crops. Beijing: Science Press, 2005. pp 172?174 (in Chinese)
[28] Liu Y, Gu D D, Wu W, Wen X X, Liao Y C. The relationship between polyamines and hormones in the regulation of wheat grain filling. PloS One, 2013,8: e78196
 [29] Liu Y, Ding Y F, Wang Q S, Meng D X, Wang S H. Effects of nitrogen and 6-benzylaminopurine on rice tiller bud growth and changes in endogenous hormones and nitrogen. Crop Sci, 2011, 51: 786?792
[30] 谈桂露, 付景, 王志琴, 刘立军, 杨建昌. 超级稻花后强、弱势粒多胺浓度变化及其与籽粒灌浆的关系. 作物学报, 2009, 35: 2225?2333
Tan G L, Zhang H, Fu J, Wang Z Q, Liu L J, Yang Y C. Post-anthesis changes in concentrations of polyamines in superior and inferior spikelets and their relation with grain filling of super rice. Acta Agron Sin, 2009, 35: 2225?2333 (in Chinese with English abstract)
[31] 刘杨, 温晓霞, 顾丹丹, 郭强, 曾爱, 李长江, 廖允成. 多胺对冬小麦籽粒灌浆的影响及其生理机制. 作物学报, 2013, 39: 712?719
    Liu Y, Wen X X, Gu D D, Guo Q, Zeng A, Li C J, Liao Y C. Effect of polyamine on grain filling of winter wheat and its physiological mechanism. Acta Agron Sin, 2013, 39: 712?719 (in Chinese with English abstract)
 

 
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!