作物学报 ›› 2015, Vol. 41 ›› Issue (01): 136-144.doi: 10.3734/SP.J.1006.2015.00136
张英华,杨佑明,曹莲,郝杨凡,黄菁,李金鹏,姚得秀,王志敏*
ZHANG Ying-Hua,YANG You-Ming,CAO Lian,HAO Yang-Fan,HUANG Jing,LI Jin-Peng,YAO De-Xiu,WANG Zhi-Min*
摘要:
为揭示小麦叶与非叶器官抗氧化系统对灌浆期高温胁迫的反应特征,探讨不同品种和不同器官耐热性差异机制,以小麦强耐热品种石家庄8号和弱耐热性品种河农341为材料,于灌浆期用塑料膜搭棚进行增温处理(花后第8天至第22天),研究高温胁迫对旗叶光合速率(Pn)、叶绿素含量、旗叶和非叶器官中丙二醛(MDA)和脯氨酸(Pro)含量及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性的影响。高温处理下,两品种Pn比正常温度下(对照)低18.7%~24.9%,叶绿素含量低5.7%~6.2%;旗叶、旗叶鞘、穗下节、颖片和籽粒的MDA含量和Pro含量均升高,其中MDA升高幅度为旗叶>非叶器官,Pro升高幅度为非叶器官>旗叶。旗叶、颖片、籽粒的SOD活性和旗叶、旗叶鞘、籽粒的CAT活性以及旗叶、旗叶鞘、颖片的POD活性在高温胁迫初期即诱导增强,而其他器官的抗氧化酶活性则在高温持续一段时间后诱导增强,之后随着高温的持续各器官抗氧化酶活性多表现为低于对照,高温解除后旗叶鞘、穗下节、颖片的SOD活性和旗叶、颖片、籽粒的POD活性有恢复迹象,高温对其他器官的SOD和POD活性以及所有器官的CAT活性造成不可逆影响;总体来看,非叶器官持续抗氧化能力和耐热性强于叶片。石家庄8号叶与非叶器官细胞膜稳定性、抗氧化酶活性均高于河农341,显示其整株耐热性强于河农341,这是石家庄8号在高温胁迫下产量下降幅度低于河农341的重要生理基础。因此认为,非叶器官在小麦适应灌浆期高温逆境中发挥重要作用。
[1]北方十三省(市)小麦干热风科研协作组. 小麦干热风伤害机理的研究. 作物学报, 1984, 10: 105–112The Cooperated Research Group on Dry-hot-wind Injury in Wheat in Thirteen Provinces and Municipalities in North China. Research in mechanism of wheat hot wind damage. Acta Agron Sin, 1984, 10: 105–112 (in Chinese with English abstract)[2]Farooq M, Bramley H, Palta J A. Heat stress in wheat during reproductive and grain filling phases. Crit Rev Plant Sci, 2011, 30: 1–7[3]邹琦. 小麦高温伤害与高温适应. 植物学报, 1988, 30: 388–395Zou Q. Heat injury and heat acclimation in wheat plants. Acta Bot Sin, 1988, 30: 388–395 (in Chinese with English abstract)[4]Shah N H, Paulsen G M. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil, 2003, 257: 219–226[5]Plaut Z, Butow B J, Blumenthal C S, Wrigley C W. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Res, 2004, 86: 185–198[6]郑飞, 臧秀旺, 黄保荣, 何钟佩. 灌浆期高温胁迫对冬小麦叶源、库器官生理活性的影响及调控. 华北农学报, 2001, 16 (2): 99–103Zheng F, Zang X W, Huang B R, He Z P. Effects of high temperature stress on the source and sink organ of winter wheat during filling stage and its regulation. Acta Agric Boreali-Sin, 2001, 16(2): 99–103 (in Chinese with English abstract)[7]郭天财, 王晨阳, 朱云集, 王化岑, 李九星, 周继泽. 后期高温对冬小麦根系及地上部衰老的影响. 作物学报, 1998, 24: 957–962Guo T C, Wang C Y, Zhu Y J, Wang H C, Li J X, Zhou J Z. Effects of high temperature on the senescene of root and top-partial of wheat plant in the later stage. Acta Agron Sin, 1998, 24: 957–962 (in Chinese with English abstract)[8]Almeselmani M, Deshmukh P S,Sairam R K. Protective role of antioxidant enzymes under high temperature stress. Plant Sci, 2006, 171: 382–388[9]Sharkova V E, Bubolo L S. Effect of heat stress on the arrangement of thylakoid membranes in the chloroplasts of mature wheat leaves. Russ J Plant Physiol, 1996, 43: 358–365[10]Dai H P, Zhang P P, Lu C, Jia G L, Song H, Ren X M, Chen J, Wei A Z, Feng B L, Zhang S Q. Leaf senescence and reactive oxygen species metabolism of broomcorn millet (Panicum miliaceum L.) under drought condition. Aust J Crop Sci, 2011, 5: 1655–1660[11]刘萍, 郭文善, 浦汉春, 封超年, 朱新开, 彭永欣. 灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响. 中国农业科学, 2005, 38: 2403–2407Liu P, Guo W S, Pu H C, Feng C N, Zhu X K, Peng Y X. Effects of high temperature during grain filling period on antioxidant enzymes and lipid peroxidation in flag leaves of wheat. Sci Agric Sin, 2005, 38: 2403–2407 (in Chinese with English abstract)[12]姜春明, 尹燕枰, 刘霞, 王振林. 不同耐热性小麦品种旗叶膜脂过氧化和保护酶活性对花后高温胁迫的响应. 作物学报, 2007, 33: 143–148Jiang C M, Yin Y P, Liu X, Wang Z L. Response of flag leaf lipid peroxidation and protective enzyme activity of wheat cultivars with different heat tolerance to high temperature stress after anthesis. Acta Agron Sin, 2007, 33: 143–148 (in Chinese with English abstract)[13]王志敏, 张英华, 张永平, 吴永成. 麦类作物穗器官的光合性能研究进展. 麦类作物学报, 2004, 24(4): 136–139Wang Z M, Zhang Y H, Zhang Y P, Wu Y C. Review on photosynthetic performance of ear organs in Triticeae crops. J Triticeae Crops, 2004, 24(4): 136–139 (in Chinese with English abstract)[14]徐晓玲, 王志敏, 张俊平. 灌浆期热胁迫对小麦不同绿色器官光合性能的得影响. 植物学报, 2001, 43: 571–577Xu X L, Wang Z M, Zhang J P. Effect of heat stress on photosynthetic characteristics of different green organs of winter wheat during grain-filling Stage. Acta Bot Sin, 2001, 43: 571–577 (in Chinese with English abstract)[15]Maydup M L, Antonietta M, Graciano C, Guiamet J J, Tambussi E A. The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: Responses to water deficit and the effects of awns on ear temperature and hydraulic conductance. Field Crops Res, 2014, 167:102–111[16]Xu X L, Zhang Y H, Wang Z M. Effect of heat stress during grain filling on phosphoenolpyruvate carboxylase.and ribulose-1,5-bisphosphate carboxylase/oxygenase activities of various green organs in winter wheat. Photosynthetica, 2003, 42: 317–320[17]Tambussi E A, Bort J, Guiamet J J, Nogués S, Araus J L. The photosynthetic role of ears in C3 cereal: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci, 2007, 26: 1-16[18]中国科学院上海植物生理研究所、上海植物生理学会. 现代植物生理学实验指南. 北京: 科学出版社, 1999Shanghai Institute of Plant Physiology, Chinese Academy of Sciences, Shanghai Association of Plant Physiology. A Laboratory Guide for Model Plant Physiology. Beijing: Science Press, 1999 (in Chinese)[19]李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2003. pp 195–197Li H S. Experimental Theory and Technology in Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2003. pp 195–197 (in Chinese)[20]陈金峰, 王宫南, 程素满. 过氧化氢酶在植物胁迫响应中的功能研究进展. 西北植物学报, 2008, 28: 188–193Chen J F, Wang G N, Cheng S M. Progress about catalase function in plant stress reactions. Acta Bot Boreali-Occident Sin, 2008, 28: 188–193 (in Chinese with English abstract)[21]田国忠, 李怀方, 裘维蕃. 植物过氧化物酶研究进展. 武汉植物学报研究, 2001, 19: 332–344Tian G Z, Li H F, Qiu W F. Advances on Research of Plant Peroxidases. J Wuhan Bot Res, 2001, 19: 332–344 (in Chinese with English abstract)[22]魏炜, 赵欣平, 吕辉, 刘克武, 喻东. 三种抗氧化酶在小麦抗干旱逆境中的作用初探. 四川大学学报(自然科学版), 2003, 40: 1172–1175Wei W, Zhao X P, Lü H, Liu K W, Yu D. The Study of the function of three antioxidant enzymes in wheat leaf under drought stress. J Sichuan Univ (Nat Sci Edn), 2003, 40: 1172–1175 (in Chinese with English abstract)[23]马旭俊, 朱大海. 植物超氧化物歧化酶(SOD)的研究进展. 遗传, 2003, 25: 225–231Ma X J, Zhu D H. Functional roles of the plant superoxide dismutase. Hereditas (Beijing), 2003, 25: 225–231 (in Chinese with English abstract) |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[6] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[9] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[10] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[11] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[12] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[13] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[14] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[15] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
|