欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2220-2227.doi: 10.3724/SP.J.1006.2013.02220

• 耕作栽培·生理生化 • 上一篇    下一篇

栽培甜菜助细胞退化进程的超微结构观察

李伟1,2,申家恒2,*,郭德栋3   

  1. 1 东北林业大学盐碱地生物资源环境研究中心,东北油田盐碱植被恢复与重建教育部重点实验室,黑龙江哈尔滨150040;2 哈尔滨师范大学生命科学与技术学院,植物生物学黑龙江省高校重点实验室,黑龙江哈尔滨150025;3 黑龙江大学生命科学院,黑龙江哈尔滨150070
  • 收稿日期:2013-05-09 修回日期:2013-07-25 出版日期:2013-12-12 网络出版日期:2013-09-29
  • 通讯作者: 申家恒,E-mail: hsdshenjiaheng@aliyun.com
  • 基金资助:

    本研究由国家自然科学基金项目(30470114)和植物生物学黑龙江省高校重点实验室(哈尔滨师范大学)开放基金项目资助。

Ultrastructure of Synergid in Its Degenerative Process in Sugar Beet (Beta vulgaris)

LI Wei1,2,SHEN Jia-Heng2,*,GUO De-Dong3   

  1. 1 Alkali Soil Natural Environmental Science Center, Northeast Forestry University / Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China; 2 College of Life Sciences and Technology, Harbin Normal University / Key Laboratory of Plant Biology, College of Heilongjiang Province, Harbin 150025, China; 3 College of Life Sciences, Heilongjiang University, Harbin 150070, China
  • Received:2013-05-09 Revised:2013-07-25 Published:2013-12-12 Published online:2013-09-29

摘要:

应用透射电镜技术研究栽培甜菜(Beta vulgaris)助细胞退化进程的超微结构特征, 以丰富被子植物生殖生物学资料。结果表明:花蕾时期,2个助细胞相似,珠孔端具发达的丝状器,合点端无壁,极性明显,细胞器种类多,数量大,呈现较强代谢活性;随后,一个助细胞的核质和胞质的电子密度显著高于另一个助细胞,液泡膜消失,线粒体、质体膜与核膜不清晰,细胞出现退化迹象,但内质网和高尔基体丰富,分泌活动旺盛;待花蕾刚开放(授粉前),此助细胞完全退化。另一个助细胞(宿存助细胞)内的细胞器逐渐增多,且功能状态趋于活跃,表现为核糖体、线粒体、质体等数量增加;线粒体内嵴丰富,可见DNA纤丝;质体形态多样,片层明显,内含淀粉粒。至卵细胞受精前(授粉后约13 h),宿存助细胞代谢达到最活跃状态;至合子合点端建成蜂窝状细胞壁且胚乳游离核形成后,宿存助细胞开始退化;至合子后期,此细胞退化完全,丝状器消失。上述结果表明,栽培甜菜助细胞的退化与授粉和花粉管生长无关;宿存助细胞做为传递细胞,为胚囊的发育吸收并转输营养。

关键词: 栽培甜菜, 助细胞, 退化进程, 超微结构

Abstract:

Anexperiment was conducted by using TEM to study the degenerative process of synergid in sugar beet, so as to provide more information for reproductive biology of angiosperm. The results were as follows: two synergids were similar in flower bud stage with large number of organelles. Both of them had developed filiform apparatus (FA) at micropyle end and lacked cell wall at chalazal end, showing obvious polarity. Then electron density in one synergid increased. On the other hand, vacuole membrane disappeared, membrane of mitochondrium, plastid and nuclear became illegible, which suggested cell degeneration began. But endoplasmic reticulum and Golgi bodies were still active. Complete degeneration of this synergid occurred before pollination. Number of organelles including mitochondrium, plastids and ribosomes gradually increased in the other synergid (persistent synergid). Mitochondria contained many tubular cristae and obvious DNA fibril. Plastids were irregular in shape and usually contained starch gains and thylakoid membranes. The metabolism of persistent synergid gradually enhanced until fertilization (about 13 h after pollination). It began to degenerate when zygote had alveolate cell wall at the chalazal end and endosperm occurred, while complete degeneration and disappearance of FA took place at late stage of zygote. The results indicated that degeneration of one synergid in sugar beet must be triggered by other stimulation than pollination and pollen tube growth. As a transfer cell, persistent synergid may absorb and transport nutrition for the development of embryo sac.

Key words: Sugar beet(Beta vulgaris L.), Synergid, Degenerate course, Ultrastructure

[1]Hu S-Y(胡适宜). Reproductive Biology of Angiosperms (被子植物生殖生物学). Beijing: Higher Education Press, 2005. pp 134 (in Chinese)



[2]Ge L-L(葛丽丽), Tian H-Q(田惠桥). Advances in the study of fertilization mechanism of angiosperms. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2006, 32(3): 271–279 (in Chinese with English abstract)



[3]You R L, Jensen W A. Ultrastructural observation of the mature megagametophyte and fertilization in wheat (Triticum aestivum). Can J Bot, 1985, 63: 163–178



[4]Dong J(董健), Yang H-Y(杨弘远). An ultrastructural study of embryo sac in Oryza sativa L. Acta Bot Sin (植物学报), 1989, 31(2): 81–88 (in Chinese with English abstract)



[5]Bruun L. The mature embryo sac of the sugar beet, Beta vulgaries: A structural investigation. Nord J Bot, 1987, 7: 543–551



[6]Mogensen H L. Fine structure and composition of the egg apparatus before and after fertilization in Quercus Gambelii: the functional ovule. Am J Bot, 1972, 59: 931–941



[7]Dute R R, Peterson C M, Rushing A E. Ultrastructural changes of the egg apparatus associated with fertilization and proembryo development of soybean, Glycine max (Fabaceae). Ann Bot, 1989, 64: 123–135



[8]Jensen W A, Fisher D B. Cotten embryogenesis: the entrance and discharge of the pollen tube in the embryo sac. Planta, 1968, 78: 158–183



[9]Schulz R, Jensen W A. Capsella embryology: the synergids before and after fertilization. Am J Bot, 1968, 55: 541–552



[10]ensen W A. The ultrastructure and histochemistry of the synergids of cotton. Am J Bot, 1965, 52: 238–256



[11]ang H-Y(杨弘远). Recent advances in research on the mechanism of synergid degeneration during fertilization process. Chin Bull Bot (植物学通报), 1994, 11(1): 1–5 (in Chinese with English abstract)



[12]Chaubal R, Reger B J. Relatively high calcium is localized in synergid cells of wheat ovaries. Sex Plant Rep, 1990, 3: 98–102



[13]Chaubal R, Reger B J. Calcium in the synergid cells and other regions of pearl millet ovaries. Sex Plant Rep, 1990, 5: 34–46



[14]Jensen W A, Ashton M E, Bearleg C A. Pollen tube -embryo sac interaction in cotton. In: Mulcahy D L, Ottaviano E, eds. Pollen: Biology and Implication for Plant Breedsing. Amsterdam: Elsevier, 1983. pp 67–72



[15]Huang B Q, Russell S D. Synergid degeneration in Nicotiana: a quantative, fluorochromatic and chlorotetracycline study. Sex Plant Rep, 1992, 5: 151–155



[16]Shen J-H(申家恒), Li H-R(李慧蓉), Yin H(殷华). Megasporogenesis and microsporogenesis and the development of their female and male gametophyte in sugar beet. Acta Agron Sin (作物学报), 1986, 12(3): 205–213 (in Chinese with English abstract)



[17]Ding C-H(丁常宏), Shen J-H(申家恒), Guo D-D(郭德栋), Li W(李伟), Dong X-Y(董雪云). Ultrastructure of megasporogenesis in Beta vulgaris L. Chin Bull Bot (植物学报), 2009, 44(5): 562–570 (in Chinese with English abstract)



[18]Li W(李伟), Shen J-H(申家恒), Guo D-D(郭德栋), Shang Y-J(尚娅佳), Lu J-P(陆俊萍), Ding C-H(丁常宏). Ultrastructure of megagametophyte during the development period in sugar beet (Beta vulgaris L.). Acta Agron Sin (作物学报), 2009, 35(3): 490–498 (in Chinese with English abstract)



[19]Lu J-P(陆俊萍), Shen J-H(申家恒), Guo D-D(郭德栋), Wang Y-J(王艳杰). Ultrastructure of pollen development in Beta vulgaris. Chin Bull Bot (植物学报), 2009, 44(3): 323–330 (in Chinese with English abstract)



[20]Hoefert L L. Ultrastructure of beta pollen: I. Cytoplasmic constituents. Am J Bot, 1969, 56: 363–368



[21]Li W(李伟), Shen J-H(申家恒), Guo D-D(郭德栋), Shang Y-J(尚娅佳), Lu J-P(陆俊萍). Ultrastructural changes of egg, zygote and two-celled proembryo in sugar beet (Beta vulgaris L.). Chin Bull Bot (植物学报), 2010, 45(1): 79–87 (in Chinese with English abstract)



[22]Shen J-H(申家恒), Li H-R(李慧蓉), Han X-H(韩晓华), Wang P(王谱). Observations on fertilization in sugar beet. Acta Bot Sin (植物学报), 1986, 28(3): 251–255 (in Chinese with English abstract)



[23]Pen X-B(彭雄波), Sun M-X(孙蒙祥). Molecule and cytology mechanism of fertilization in angiosperms. Chin Bull Bot (植物学报), 2007, 24(3): 355–371 (in Chinese with English abstract)



[24]Yan H(阎华), Yang H-Y(杨弘远), Jensen W A. Ultrastructure of the developing embryo sac of sunflower (Helianthus annuus) before and after fertilization. Can J Bot, 1991, 69: 191–202



[25]Sandaklie-Nikolova L, Palanivelu R, King E J, Copenhaver G P, Drews G N. Synergid cell death in Arabidopsis is triggered following direct interaction with the pollen tube. Plant Physiol, 2007, 144: 1753–1762



[26]Wu H M, Cheung A Y. Programmed cell death in plant reproduction. Plant Mol Biol, 2000, 44: 267–281

[1] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[2] 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874.
[3] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
[4] 范元芳,杨峰*,刘沁林,谌俊旭,王锐,罗式伶,杨文钰*. 套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响[J]. 作物学报, 2017, 43(02): 277-285.
[5] 李伟,申家恒,郭德栋. 栽培甜菜中央细胞受精前后的超微结构[J]. 作物学报, 2014, 40(01): 166-173.
[6] 王复标,黄福灯,程方民,李兆伟,胡东维,潘刚,毛愉婵. 水稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观察[J]. 作物学报, 2012, 38(05): 871-879.
[7] 邱义兰,李红,彭克勤,刘珠丽,陈松,刘如石,梁满中,陈良碧. 水稻“斑马叶”突变体b411叶绿体超微结构的观察[J]. 作物学报, 2010, 36(1): 184-190.
[8] 丁常宏,申家恒,郭德栋,尚娅佳,陆俊萍. 甜菜无融合生殖单体附加系M14大孢子发生的超微结构[J]. 作物学报, 2009, 35(8): 1516-1524.
[9] 李伟;申家恒;郭德栋;尚娅佳;陆俊萍;丁常宏. 栽培甜菜雌配子体发育中的超微结构[J]. 作物学报, 2009, 35(3): 490-498.
[10] 吕典华,宗学凤,王三根,凌英华,桑贤春,何光华. 两个水稻叶色突变体的光合特性研究[J]. 作物学报, 2009, 35(12): 2304-2308.
[11] 张其芳,刘奕,黄福灯,胡东维,程方民. 水稻不同粒位小穗轴的超微结构差异及其CaM活性的细胞化学定位[J]. 作物学报, 2009, 35(12): 2280-2287.
[12] 杨晓丽;张海洋;郭旺珍;郑永战;苗红梅;魏利斌;张天真. 芝麻核雄性不育系ms86-1小孢子败育过程的超微结构[J]. 作物学报, 2008, 34(11): 1894-1900.
[13] 冯波;董树亭;高荣岐;胡昌浩;王空军. 玉米种苗转化过程中盾片的超微结构观察[J]. 作物学报, 2005, 31(02): 234-237.
[14] 韩善华;顾素芳;张红. 豌豆根瘤发育中侵染细胞核的超微结构变化[J]. 作物学报, 2004, 30(07): 719-722.
[15] 周竹青;蓝盛银;朱旭彤;王维金;徐珍秀. 小麦颖果腹部维管束韧皮部细胞的超微结构与功能分析[J]. 作物学报, 2004, 30(02): 163-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!