欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (07): 1227-1234.doi: 10.3724/SP.J.1006.2014.01227

• 耕作栽培·生理生化 • 上一篇    下一篇

甜玉米乳熟期籽粒维生素A源和维生素E组分的变异

冯发强1,王国华1,王青峰1,杨瑞春1,李小琴1,2,*   

  1. 1 华南农业大学农学院,广东广州 510642;2 亚热带农业生物资源保护与利用国家重点实验室 / 华南农业大学,广东广州 510642
  • 收稿日期:2013-11-25 修回日期:2014-04-16 出版日期:2014-07-12 网络出版日期:2014-05-16
  • 通讯作者: 李小琴, E-mail: xiaoqinli2000@126.com, Tel: 020-85285332
  • 基金资助:

    本研究由国家自然科学基金项目(31071427)和高等学校博士学科点专项科研基金项目(20114404110005)资助。

Variation of Provitamin A and Vitamin E Components at Milk Stage of Kernel Development in Sweet Corn

FENG Fa-Qiang1,WANG Guo-Hua1,WANG Qing-Feng1,YANG Rui-Chun1,LI Xiao-Qin1,2,*   

  1. 1 College of Agriculture, South China Agricultural University, Guangzhou 510642, China; 2 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
  • Received:2013-11-25 Revised:2014-04-16 Published:2014-07-12 Published online:2014-05-16
  • Contact: 李小琴, E-mail: xiaoqinli2000@126.com, Tel: 020-85285332

摘要:

维生素A和维生素E是人与动物必须从食物中摄取的微营养物质。甜玉米是人类直接食用的一种鲜食玉米类型。本研究利用高效液相色谱法测定了47份甜玉米自交系籽粒乳熟期的维生素A源和维生素E各组分的含量。结果表明,不同基因型甜玉米材料间维生素A源和维生素E各组分及α/γ-生育酚存在显著差异。非维生素A源的叶黄素和玉米黄质为维生素A组分中的主要成分,γ-生育酚为维生素E组分中的主要成分。相关分析表明多数性状间表现为显著正相关或不相关,其中β-胡萝卜素极显著正相关于玉米黄质、β-隐黄质和α-类胡萝卜素,维生素E各组分两两极显著相关,α/γ-生育酚极显著负相关于δ-生育酚和γ-生育酚,极显著正相关于玉米黄质和α-生育酚,β-胡萝卜素与α-生育酚的呈正相关。这些数据为进一步研究甜玉米籽粒中维生素A源和维生素E的代谢和微营养品质的改良提供了有益的表型数据。

关键词: 甜玉米, 乳熟期, 维生素A源, 维生素E, 高效液相色谱

Abstract:

 

Vitamin A and Vitamin E are two kinks of micronutrients that must be acquired regularly from dietary sources. Sweet corn is a type of fresh corn for direct consumption by human beings. The content of provitamin A and vitamin E components at milk stage of kernels development were measured by HPLC in 47 sweet corn lines. The results showed that the contents of carotenoids and tocopherols and the α/γ tocopherol ratio were extremely different among 47 sweet corn lines. The non-provitamin A, including lutein and zeaxanthin, is the main components of the total carotenoids. The main component of vitamin E is γ-tocopherol. The pearson correlation analysis showed that significantly positive correlation and non-correlation were detected among most traits. β-Carotene was significantly positive correlated with zeaxanthin, β-cryptoxanthin and α-carotenoids, respectively. Three isomers of vitamin E were significantly correlated between each other. The ratio of α/γ tocopherol had a significantly negative correlation with δ-tocopherol and γ-tocopherol and a significantly positive correlation with zeaxanthin and α-tocopherol. A significantly positive association was found between β-carotene and α-tocopherol. These results provide useful information for the research on provitamin A and vitamin E metabolism and nutritional improvement in sweet corn.

Key words: Sweet corn, Milk stage, Provitamin A, Vitamin E, HPLC

[1]Dowling J E, Wald G. The role of vitamin A acid. Vitamins & Hormones, 1961, 18: 515–541



[2]张雅稚. 维生素A的生理功能与应用方法. 中国食物与营养, 2007, 12: 55–56



Zhang Z Y. The function and application of vitamin A. Food Nutr China, 2007, 12: 55–56 (in Chinese)



[3]Eggermont E. Recent advances in vitamin E metabolism and deficiency. Eur J Pediatr, 2006, 165: 429–434



[4]Schneider C. Chemistry and biology of vitamin E. Mol Nutr Food Res, 2005, 49: 7–30



[5]Herrera E, Barbas C. Vitamin E: action, metabolism and perspectives. J Physiol Biochem, 2001, 57: 43–56



[6]Grams G W, Blessin C W, Inglett G E. Distribution of tocopherols within the corn kernel. J Am Oil Chem Soc, 1970, 47: 337–339



[7]Handelman G J. The evolving role of carotenoids in human biochemistry. Nutrition, 2001, 17: 818–822



[8]Sandmann G. Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci, 2001, 6: 14–17



[9]Chander S, Guo Y, Yang X, Yan J, Zhang Y, Song T, Li J. Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach. Mol Breed, 2008, 22: 353–365



[10]Wong J C, Lambert R J, Wurtzel E T, Rocheford T R. QTL and candidate genes phytoene synthase and ζ-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet, 2004, 108: 349–359



[11]Harjes C E, Rocheford T R, Bai L, Brutnell T P, Kandianis C B, Sowinski S G, Stapleton A E, Vallabhaneni R, Williams M, Wurtzel E T, Yan J, Buckler E S. Natural genetic variation in Lycopene Epsilon Cyclase tapped for maize biofortification . Science, 2008, 319: 330–333



[12]Goffman F D, Boehme T. Relationship between fatty acid profile and vitamin E content in maize hybrids (Zea mays L.). J Agric Food Chem, 2001, 49: 4990–4994



[13]Chander S, Meng Y, Zhang Y, Yan J, Li J. Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. J Agric Food Chem, 2008, 56: 6506–6511



[14]Kurilich A C, Juvik J A. Quantification of carotenoid and tocopherol antioxidants in Zea mays. J Agric Food Chem, 1999, 47: 1948–1955



[15]Egesel C O, Wong J C, Lambert R J, Rocheford T R. Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci, 2003, 43: 818–823



[16]Chander S, Guo Y Q, Yang X H, Zhang J, Lu X Q, Yan J B, Song T M, Rocheford T R, Li J S. Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet, 2008, 116: 223–233



[17]Yan J, Kandianis C B, Harjes C E, Bai L, Kim E, Yang X, Skinner D J, Fu Z, Mitchell S, Li Q, Fernandez M G S, Zaharieva M, Babu R, Fu Y, Palacios N, Li J, DellaPenna D, Brutnell T, Buckler E S, Warburton M L, Rocheford T. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet, 2010, 42: 322–327



[18]Li Q, Yang X, Xu S, Cai Y, Zhang D, Han Y, Li L, Zhang Z, Gao S, Li J, Yan J. Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PLoS One, 2012, 7: e36807



[19]Rocheford T R, Wong J C, Egesel C O, Lambert R J. Enhancement of Vitamin E levels in corn. J Am Coll Nutr, 2002, 21: 191–198

[1] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
[2] 颜晓军, 叶德练, 苏达, 李芳, 郑朝元, 吴良泉. 磷肥用量对甜玉米磷素吸收利用的影响[J]. 作物学报, 2021, 47(1): 169-176.
[3] 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713.
[4] 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055.
[5] 于永涛,李高科,祁喜涛,李春艳,毛笈华,胡建广. 甜玉米果皮厚度QTL的定位及上位性互作[J]. 作物学报, 2015, 41(03): 359-366.
[6] 张红梅,李海朝,文自翔,顾和平,袁星星,陈华涛,崔晓艳,陈新,卢为国. 大豆籽粒维生素E含量的QTL分析[J]. 作物学报, 2015, 41(02): 187-196.
[7] 孙娟,李为喜,张妍,孙丽娟,董晓丽,胡学旭,王步军. 用超高效液相色谱串联质谱法同时测定谷物中12种真菌毒素[J]. 作物学报, 2014, 40(04): 691-701.
[8] 赵福成,景立权,闫发宝,陆大雷,王桂跃,陆卫平. 灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响[J]. 作物学报, 2013, 39(09): 1644-1651.
[9] 刘敏轩,陆平. 中国谷子育成品种维生素E含量分布规律及其与主要农艺性状和类胡萝卜素的相关性分析[J]. 作物学报, 2013, 39(03): 398-408.
[10] 李余良,刘建华,郑锦荣,胡建广. 高温胁迫下甜玉米雌穗发育基因差异表达谱分析[J]. 作物学报, 2013, 39(02): 269-279.
[11] 李为喜, 郑床木, 武力, 李欣, 李静梅, 宋敬可, 杨秀兰, 王步军. 测定玉米中伏马毒素的免疫亲和层析净化高效液相色谱法[J]. 作物学报, 2012, 38(03): 556-562.
[12] 杨丹, 耿志明, 马鸿翔, 姚金保, 张旭, 张平平, 张鹏. 高效液相色谱-紫外法同时检测小麦中DON、15ACDON和3ACDON[J]. 作物学报, 2012, 38(01): 186-189.
[13] 张桂云, 刘如如, 张鹏, 徐勇, 朱姜, 顾铭洪, 梁国华, 刘巧泉. 水稻籽粒维生素E及组分在品种间的变异与分布[J]. 作物学报, 2012, 38(01): 55-61.
[14] 乐素菊, 肖德兴, 刘鹏飞, 曾慕衡, 王伟权, 王晓明. 超甜玉米果皮结构与籽粒柔嫩性的关系[J]. 作物学报, 2011, 37(11): 2111-2116.
[15] 王春娥, 赵团结, 盖钧镒. 大豆异黄酮组分HPLC快速分析技术及其在豆腐加工中的应用[J]. 作物学报, 2010, 36(12): 2062-2072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!