作物学报 ›› 2014, Vol. 40 ›› Issue (11): 1925-1935.doi: 10.3724/SP.J.1006.2014.01925
刘昱翔1,**,陈建荣2,**,彭彦1,黄妤1,赵燕1,黄丽华1,郭清泉2,张学文1,*
LIU Yu-Xiang1,**,CHEN Jiang-Rong2,**,PENG Yan1,HUANG Yu1,ZHAO Yan1,HUANG Li-Hua1,GUO Qing-Quan2,ZHANG Xue-Wen1,*
摘要:
从苎麻转录组数据出发, 利用Blast工具从中分析出与多种植物纤维素合酶高度相似的片段CL789和Unigene20360。根据片段信息设计特异性引物, 从苎麻[Boehmeria nivea (Linn.)Gaud.]栽培种湘苎3号中克隆纤维素合酶核心片段, 并利用5'及3'RACE技术获得2个片段的全长cDNA。两者都具有典型的纤维素合酶特征结构域, 表明为2个苎麻纤维素合酶基因CesA的cDNA序列, 分别命名为BnCesA2和BnCesA3。BnCesA2基因编码区全长度3240 bp, 编码1 079氨基酸多肽; BnCesA3基因编码区全长3120 bp, 编码1039氨基酸多肽。对BnCesA2和BnCesA3基因在湘苎1号、湘苎3号、湘潭大叶白和城步青麻苎麻品种木质部和韧皮部荧光定量PCR分析显示, 2个基因在不同品种苎麻的木质部及韧皮部都有表达, 但表达量存在着一定差异, 整体而言BnCesA2具有更高的表达水平, 其木质部和韧皮部的表达都为BnCesA3的2~5倍。推测BnCesA2和BnCesA3都参与了苎麻细胞壁的次生合成。
[1]李宗道. 麻作的理论与技术. 上海: 上海科学技术出版社, 1980. pp 124–256 (in Chinese with English abstract)Li Z D. Theory and technology of bast fiber crops. Shanghai: Shanghai Scientific and Technical Publishers, 1980. pp 124–256[2]晏春耕, 曹瑞芳. 苎麻韧皮纤维三维结构与生长发育特性的研究. 广西农业科学, 2006, 37(3): 224–227Yan C G, Cao R F. Studies on tri-dimension structure of ramie phloem fiber and its characteristics of growth and development. Guangxi Agric Sci, 2006, 37(3): 224–227 (in Chinese with English abstract)[3]Haigler C H, Ivanova-Datcheva M, Hogan P S, Salnikov V V, Hwang S, Martin K, Delmer D P. Carbon partitioning to cellulose synthesis. Plant Mol Biol, 2001, 47: 29–51[4]Pear J R, Kawagoe Y, Schreckengost W E, Delmer D P, Stalker D M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA, 1996, 93: 12637–12642[5]Delmer D P. Cellulosebiosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant MolBiol, 1999, 50: 245–276[6]Richmond T A, Somerville C R. The cellulose synthase superfamily. Plant Physiol, 2000, 124: 495–498[7]Monika S, Doblin, Isaac Kurek, Deborah Jacob-Wilk and Deborh P. Delmer. Cellulose Biosynthesis in Plants: from Genes to Rosettes. Plant and Cell Physiol, 2002, 43: 1407–1420[8]Liu T M, Zhu S Y, Tang Q M, Chen P, Yu Y T, Tang S W. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics, 2013, 14: 125[9]田志坚, 易蓉, 陈建荣, 郭清泉, 张学文. 苎麻纤维素合酶基因cDNA的克隆及表达分析. 作物学报, 2008, 34: 76–83Tian Z J, Yi R, Chen J R, Guo Q Q, Zhang W X. Cloning and expression of cellulose synthase gene in ramie [Boehmeria nivea (Linn.) Gaud]. Acta Agron Sin, 2008, 34: 76–83 (in Chinese with English abstract)[10]蒋杰, 揭雨成, 周清明, 周精华. 苎麻纤维素合酶基因BnCesA1 全长cDNA 的克隆与表达分析. 植物遗传资源学报, 2012, 13: 851-857Jiang J, Jie Y C, Zhou Q M, Zhou J H. Full-length cDNA cloning and express analysis of BnCesA1 in ramie. J Plant Genet Resour (植物遗传资源学报), 2012, 13: 851–857 (in Chinese with English abstract)[11]郭清泉, 胡日生, 孙焕良, 周清明, 杨瑞芳, 王林辉. 苎麻胶质的基因型差异与成因及育种中利用研究: I. 苎麻胶质及其组分含量的基因型差异. 湖南农业大学学报, 2000, 26: 340–342Guo Q Q, Hu R S, Sun H L, Zhou Q M, Yang R F, Wang L H. Genotype differences of non-cellulose matter in ramie and its contributing factors and its application in ramie breeding I: differences of whole non-cellulose matter and various components among genotypes of ramie. J Hunan Agric Univ, 2000, 26: 340–342 (in Chinese with English abstract)[12]马雄风, 喻春明, 唐守伟, 朱爱国, 王延周, 朱四元, 刘建新, 熊和平. 苎麻Actin1基因克隆及其在韧皮部纤维不同发育阶段的表达. 作物学报, 2010, 36(1): 101–108Ma X F, Yu C M, Tang S W ,Zhu A G , Wang Y Z, Zhu S Y, Liu J X, Xiong H P. Cloning and tissue expression of actin1 gene in different fiber development phases of ramie [Boehmeria nivea (Linn.) Gaud.]. Acta Agron Sin, 2010, 36(1): 101–108 (in Chinese with English abstract)[13]Richmond T. Higher plant cellulose synthases. Genome Biol, 2000, 1(4): reviews 3001[14]Nobles D R, Romanovicz D K, Brown R M Jr. Origin of vascular plant cellulose synthase. Plant Physiol, 2001, 127: 529–542[15]Kurek I, Kawagoe Y, Jacob-Wilk D. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci USA, 2002, 99: 11109–11114[16]Joshi C P, Bhandari S, Ranjan P, Kalluri U C, Liang X, Fujino T, Samuga A. Genomics of cellulose biosynthesis in poplars. New Phytol, 2004, 164: 53–61[17]Pfaffl M W, Daxenberger A, Hageleit M, Meyer H H D. Effects of synthetic progestagens on the mRNA expression of androgen receptor, progesterone receptor, oestrogen receptor alpha and beta, insulin-like growth factor-1 (IGF-1) and IGF-1 receptor in heifer tissues. Vet Med Ser A, 2002, 49: 57–64[18]Delmer D P. Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 245–276[19]Reiter W D. Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol, 2002, 5: 536–542[20]Brown R M Jr, Saxena I M. Cellulose biosynthsis : a model for understanding the assembly of biopolymers. Plant Physiol Biochem, 2000, 38: 57–67[21]Turner S R, Somerville C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell, 1997, 9: 689–701[22]Taylor N G, Scheible W R, Cutler S, Somerville C R, Turner S R. The irregular xylem 3 locus of Arabidopsis encodes a cellulose synthase catalytic subunits are required for secondary cell wall synthesis. Plant Cell, 1999, 11: 769–779[23]Brown D M, Zeef L A H, Ellis J, Goodacre R, Turner S R: Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Cellulose, 2005, 17: 2281–2295[24]Taylor N G, Howells R M, Huttly A K, Vickers K, Turner S R. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA, 2003, 100: 1450–1455[25]Taylor N G, Laurie S, Turner S R. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell, 2000, 12: 2529–2539[26]Burn J E, Hocart C H, Birch R J, Cork A C, Williamson R E. Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol, 2002, 129, 797–807[27]Somerville C. Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol, 2006, 22, 53–78[28]Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville C R. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104: 15566–15571[29]Taylor N G, Howells R M, Huttly A K, Vickers K, Turner S R. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA, 2003, 100: 1450–1455[30]李益, 胡尚连, 卢学琴, 蒋瑶, 黄胜雄, 李向前. 植物纤维素合酶基因的进化分析. 华北农学报, 2008, 23(2): 101–105 (in Chinese with English abstract)Li Y, Hu S L, Lu X Q, Jiang Y, Huang S X, Li X Q. Evolution analysis of the plant cellulose synthase (CesA) gene family. Acta Agric Boreali-Sin, 2008, 23(2): 101–105[31]Jian W, Paul A, Howles A H, Cork, Rosemary J B, Richard E W. chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls. Plant Physiol, 2006, 142: 685–695[32]Zhu H Y, Han X Y, Lü J H, Zhao L, Xu X Y, Zhang T Z, Guo W Z. Structure expression differentiation and evolution of duplicated fiber developmental genes in G. barbadense and G. hirsutum. BMC Plant Biol, 2011, 11: 40 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[3] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[4] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[5] | 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030. |
[6] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[7] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[8] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[9] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[10] | 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361. |
[11] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[12] | 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952. |
[13] | 付虹雨, 崔国贤, 李绪孟, 佘玮, 崔丹丹, 赵亮, 苏小惠, 王继龙, 曹晓兰, 刘婕仪, 刘皖慧, 王昕惠. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455. |
[14] | 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2a和GmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032. |
[15] | 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711. |
|