欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (12): 2081-2089.doi: 10.3724/SP.J.1006.2014.02081

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

酵母表面展示系统的改进及其在筛选烟草PMT基因启动子结合蛋白中的应用

陈红,牛海峡,王文静,马浩然,李加纳,柴友荣,张洪博*   

  1. 西南大学农学与生物科技学院 / 重庆市油菜工程技术研究中心,重庆 400716
  • 收稿日期:2014-05-15 修回日期:2014-09-16 出版日期:2014-12-12 网络出版日期:2014-10-08
  • 通讯作者: 张洪博, E-mail: hbzhang@swu.edu.cn
  • 基金资助:

    本研究由教育部博士点基金项目(20120182120031), 高等学校学科创新引智计划(B12006)和西南大学“中央高校基本科研业务费专项资金”(XDJK2012C089, 2362014xk09)资助。

Screening of Promoter-Binding Factors of Tobacco PMT Gene Using a Modified Yeast Surface Display System

CHEN Hong,NIU Hai-Xia,WANG Wen-Jing,MA Hao-Ran,LI Jia-Na,CHAI You-Rong,ZHANG Hong-Bo   

  1. College of Agronomy and Biotechnology, Southwest University/Chongqing Engineering Research Center for Rapeseed, Chongqing 400716, China
  • Received:2014-05-15 Revised:2014-09-16 Published:2014-12-12 Published online:2014-10-08
  • Contact: 张洪博, E-mail: hbzhang@swu.edu.cn

摘要:

筛选DNA结合蛋白常用的酵母单杂交系统在应用中有时会因内源干扰而影响筛选结果。与之相比,酵母表面展示系统(yeast surface display system)将外源蛋白展示在细胞表面,可通过接近体外实验的方法筛选DNA结合蛋白,能在一定程度上避免酵母内源干扰,但是,该系统在DNA结合蛋白筛选研究中的应用还很有限。本研究对酵母表面展示系统常用载体pYD1进行改造,使其与Clontech公司的Smart cDNA文库构建系统相匹配,提高了cDNA酵母表面展示文库的构建效率,并通过比较试验建立了一个以酵母表面展示系统筛选DNA结合蛋白的试验体系。在以酵母单杂交筛选烟草腐胺甲基转移酶基因PMT (putrescine N-methyltransferase)启动子结合蛋白的研究中,其茉莉素信号应答元件GAG片段是一段筛选效率极低的DNA片段。本研究利用改进的酵母表面展示系统对GAG片段的DNA结合蛋白进行了筛选,并获得若干烟草蛋白基因,其中包括2个可能结合GAG片段的ERF (ethylene responsive factor)转录因子。进一步研究发现,这2个ERF转录因子可与GAG片段在体外结合,但不能在酵母单杂交系统中激活由GAG片段操纵的报告基因表达。本研究也证明酵母表面展示系统可有效克服酵母内源干扰,弥补酵母单杂交系统在筛选易受酵母内源干扰DNA结合蛋白方面的不足。

关键词: 酵母表面展示, Smart cDNA文库, DNA结合蛋白, 酵母单杂交, PMT基因

Abstract:

Yeast surface display system is an important tool for studying molecular interaction of proteins, however, its application in DNA-binding-protein screening is relatively limited. Yeast surface display system secretes exogenous proteins onto cell surface, thus, it could be applied to determine protein interaction under in-vitro-like experiment conditions. Therefore, it may be more efficient than yeast one-hybrid system in screening the DNA-binding proteins whose DNA-binding capability is affected by endogenous yeast factors. In this study, we modified the pYD1 vector in yeast surface display system to make it compatible with the Smart cDNA library construction kit from Clontech, which will be helpful to increase the library construction efficiency. An experimental procedure for DNA-binding protein isolation was established using the modified yeast surface display system. Then, it was successfully applied in screening DNA-binding proteins of a jasmonate (JA) responsive element in the promoter of tobacco PMT (putrescine N-methyltransferase) gene. Among the isolated genes, two encoded ERF transcription factors, which were found to bind the JA responsive element in PMT promoter in vitro but unable to activate the expression of reporters in yeast-one-hybrid system. Our study suggests that yeast surface display system is efficient in screening the DNA-binding proteins whose DNA-binding capability in yeast-one-hybrid system is disrupted by endogenous factors.

Key words: Yeast surface display, Smart cDNA Library, DNA-binding protein, Yeast one-hybrid, PMT gene

[1]Schwechheimer C, Zourelidou M, Bevan M W. Plant transcription factor studies. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 127–150
[2]廖名湘, 方福德. 酵母单杂交体系--一种研究DNA-蛋白质相互作用的有效方法. 中国医学科学院学报, 2000, 22: 388–391
Liao M X, Fang F D. Yeast one-hybrid system--one effective method studying DNA-protein interaction. Acta Acad Med Sin, 2000, 22: 388–391 (in Chinese with English abstract)
[3]王佳堃, 孙中远, 刘建新. 酵母细胞表面展示技术. 动物营养学报, 2011, 23: 1847–1853
Wang J K, Sun Z Y, Liu J X. Recent advances in yeast cell-surface display technology. Chin J Anim Nutr, 2011, 23: 1847–1853 (in Chinese with English abstract)
[4]Kondo A, Ueda M. Yeast cell-surface display--applications of molecular display. Appl Microbiol Biotechnol, 2004, 64: 28–40
[5]Pepper L R, Cho Y K, Boder E T, Shusta E V. A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen, 2008, 11: 127–134
[6]Gera N, Hussain M, Rao B M. Protein selection using yeast surface display. Methods, 2013, 60: 15–26
[7]Boder E T, Raeeszadeh-Sarmazdeh M, Price J V. Engineering antibodies by yeast display. Arch Biochem Biophys, 2012, 526: 99–106
[8]罗立新, 吴琳, 林影. 酵母表面展示分选酶底物用于分选酶活性检测. 微生物学报, 2009, 49: 1534–1539
Luo L X, Wu L, Lin Y. Studies on the sortase activity assay via display its substrates on yeast surface. Acta Microb Sin, 2009, 49: 1534–1539 (in Chinese with English abstract)
[9]张伟, 郭钦, 阮辉, 张洪波, 何国庆. 酵母表面展示技术在蛋白质工程中的应用. 生物技术通报, 2009, (8): 63–66
Zhang W, Guo Q, Ruan H, Zhang H B, He G Q. Application of yeast cell-surface display for protein engine application of yeast cell-surface display for protein engineering. Biotechnol Bull, 2009, (8): 63–66 (in Chinese with English abstract)
[10]郭钦, 张伟, 阮晖, 何国庆. 酿酒酵母表面展示表达系统及应用. 中国生物工程杂志, 2008, 28 (12): 116–122
Guo Q, Zhang W, Ruan H, He G Q. Cell-surface display expression system of Saccharomyces cerevisiae and its applications. Chin Biotechnol, 2008, 28 (12): 116–122 (in Chinese with English abstract)
[11]Lofblom J. Bacterial display in combinatorial protein engineering. Biotechnol J, 2011, 6: 1115–1129
[12]Bratkovic T. Progress in phage display: evolution of the technique and its application. Cell Mol Life Sci, 2010, 67: 749–767
[13]Tanaka T, Yamada R, Ogino C, Kondo A. Tanaka T, Yamada R, Ogino C, Kondo A. Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol, 2012, 95: 577–591
[14]Bidlingmaier S, Wang Y, Liu Y, Zhang N, Liu B. Comprehensive analysis of yeast surface displayed cDNA library selection outputs by exon microarray to identify novel protein-ligand interactions. Mol Cell Proteomics, 2011, 10: M110 005116
[15]Chattopadhyay M K, Ghosh B. Molecular analysis of polyamine biosynthesis in higher plants. Curr Sci, 1998, 74: 517–522
[16]Chou W M, Kutchan T M. Enzymatic oxidations in the biosynthesis of complex alkaloids. Plant J, 1998, 15: 289–300
[17]Riechers D E, Timko M P. Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol, 1999, 41: 387–401
[18]Shoji T, Yamada Y, Hashimoto T. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol, 2000, 41: 831–839
[19]Baldwin I T. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA, 1998, 95: 8113–8118
[20]Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T, Sakagami Y, Yamada Y, Nakamura K. Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol, 1998, 38: 1101–1111
[21]Shoji T, Hashimoto T. Why does anatabine, but not nicotine, accumulate in jasmonate-elicited cultured tobacco BY-2 cells? Plant Cell Physiol, 2008, 49: 1209–1216
[22]Xu B, Timko M. Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Mol Biol, 2004, 55: 743–761
[23]Sears M T, Zhang H, Rushton P J, Wu M, Han S, Spano A J, Timko M P. NtERF32: a non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco. Plant Mol Biol, 2013, 84:49–66
[24]Zhang H B, Bokowiec M T, Rushton P J, Han S C, Timko M P. Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis. Mol Plant, 2012, 5: 73–84
[25]De Sutter V, Vanderhaeghen R, Tilleman S, Lammertyn F, Vanhoutte I, Karimi M, Inzé D, Goossens A, Hilson P. Exploration of jasmonate signaling via automated and standardized transient expression assays in tobacco cells. Plant J, 2005, 44: 1065–1076
[26]Todd A T, Liu E, Polvi S L, Pammett R T, Page J E. A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana. Plant J, 2010, 62: 589–600
[27]Shoji T, Ogawa T, Hashimoto T. Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes. Plant Cell Physiol, 2008, 49: 1003–1012
[1] 王珍, 张晓莉, 孟晓静, 姚梦楠, 缪文杰, 袁大双, 朱冬鸣, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜丝裂原活化蛋白激酶7基因(BnMAPK7)上游调控因子的鉴定[J]. 作物学报, 2021, 47(12): 2379-2393.
[2] 贾双伟,高英,赵开军. 芥菜锌指蛋白转录因子基因Bj26的克隆与鉴定[J]. 作物学报, 2014, 40(07): 1174-1181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!