作物学报 ›› 2014, Vol. 40 ›› Issue (07): 1174-1181.doi: 10.3724/SP.J.1006.2014.01174
贾双伟1**,高英1**,赵开军1,*
JIA Shuang-Wei1**,GAO Ying1*,ZHAO Kai-Jun1,*
摘要:
锌指蛋白是一类重要的转录因子家族,参与植物基因转录调节、发育及胁迫反应等生理过程。我们前期研究发现芥菜诱导型启动子BjC-P的W-box-like-4为其真菌诱导的核心元件,本研究通过酵母单杂交技术从芥菜cDNA文库中筛选到与W-box-like-4序列特异互作的转录因子基因Bj26。生物信息学分析表明,Bj26含735 bp的开放阅读框,编码一个新的C2H2型锌指蛋白,包括2个典型的C2H2型锌指结构及2个植物特有的QALGGH氨基酸保守序列,等电点pI为9.2,分子量为26.6 kD。亚细胞定位显示该蛋白位于细胞核。本氏烟瞬时表达分析表明Bj26蛋白通过与BjC-P的真菌诱导核心元件序列特异互作,激活启动子BjC-P。实时荧光定量PCR结果显示Bj26在真菌诱导下表达量明显增高。Bj26的CDS序列与拟南芥和水稻中的C2H2型锌指蛋白序列比对及进化树分析表明,Bj26与拟南芥的C2H2型蛋白同源性高于水稻。以上结果揭示Bj26蛋白可能介导BjC-P真菌诱导响应并参与植物抗真菌病原菌的调控过程。
v[1]Takatsuji H. Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol, 1999, 39: 1073–1078[2]黄骥, 王建飞, 张红生. 植物C2H2型锌指蛋白的结构与功能. 遗传, 2004, 26: 414–418Huang J, Wang J F, Zhang H S. Structure and function of plant C2H2 zinc finger protein. Hereditays (Beijing), 2004, 26: 414–418 (in Chinese with English abstract)[3]Moore M, Ullman C. Recent developments in the engineering of zinc finger proteins. Brief Funct Genom Proteomics, 2003, 1: 342–355[4]Jenkins T H, Li J H, Scutt C P, Gilmartin P M. Analysis of members of the Silene latifolia Cys2/His2 zinc-finger transcription factor family during dioecious flower development and in a novel stamen-defective mutant ssf1. Planta, 2005, 220: 559–571[5]Schumann U, Prestele J, O’Geen H, Brueggeman R, Wanner G, Gietl C. Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. Proc Natl Acad Sci USA, 2007, 104: 1069–1074[6]Agarwal P, Arora R, Ray S, Singh A K, Singh V P, Takatsuji H, Kapoor S, Tyagi A K. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol, 2007, 65: 467–485[7]Ciftci-Yilmaz S, Mittler R. The zinc finger network of plants. Cell Mol Life Sci, 2008, 65: 1150–1160[8]Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant, 2008, 133: 481–489[9]Kie?bowicz-Matuk A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci, 2012, 185–186: 78–85[10]Jiang L, Pan L J. Identification and expression of C2H2 transcription factor genes in Carica papaya under abiotic and biotic stresses. Mol Biol Rep, 2012, 39: 7105–7115[11]Zhang H, Ni L, Liu Y, Wang Y, Zhang A, Tan M, Jiang M. The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice. J Integr Plant Biol, 2012, 54: 500–510[12]Huang J, Yang X, Wang M M, Tang H J, Ding L Y, Shen Y, Zhang H S. A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochim Biophys Acta, 2007, 1769: 220–227[13]Huang J, Sun S J, Xu D Q, Yang X, Bao Y M, Wang Z F, Tang H J, Zhang H. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun, 2009, 389: 556–561[14]Sun S J, Guo S Q, Yang X, Bao Y M, Tang H J, Sun H, Huang J, Zhang H S. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot, 2010, 61: 2807–2818[15]Tian Z D, Zhang Y, Liu J, Xie C H. Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biol (Stuttg), 2010, 12: 689–697[16]Grover A. Plant chitinases: genetic diversity physiological roles. Crit Rev Plant Sci, 2012, 31: 57–73[17]Zhao K J, Chye M L. Methyl jasmonate induces expression of a novel Brassica juncea chitinase with two chitin-binding domains. Plant Mol Biol, 1999, 40: 1009–1018[18]Guan Y, Chye M L. A Brassica juncea chitinase with two-chitin binding domains show anti-microbial properties against phytopathogens and Gram-negative bacteria. Plant Signal Behav, 2008, 3: 1103–1105[19]Guan Y, Ramalingam S, Nagegowda D, Taylor P W, Chye M L. Brassica juncea chitinase BjCHI1 inhibits growth of fungal phytopathogens and agglutinates gram-negative bacteria. J Exp Bot, 2008, 59: 3475–3484[20]Fung K L, Zhao K J, He Z M, Chye M L. Tobacco-expressed Brassica juncea chitinase BjCHI1 shows antifungal activity in vitro. Plant Mol Biol, 2002, 50: 283–294[21]Chye M L, Zhao K J, He Z M, Ramalingam S, Fung K L. An agglutinating chitinase with two chitin-binding domains confers fungal protection in transgenic potato. Planta, 2005, 220: 717–730[22]Gao Y, Zan X L, Wu X F, Yao L, Chen Y L, Jia S W, Zhao K J. Identification of fungus-responsive cis-acting element in the promoter of Brassica juncea chitinase gene, BjCHI1. Plant Sci, 2014, 215-216: 190–198 [23]Kim S H, Hong J K, Lee S C, Sohn K H, Jung H W, Hwang B K. CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen induced early-defense gene in Capsicum annuum. Plant Mol Biol, 2004, 55: 883–904[24]Uehara Y, Takahashi Y, Berberich T, Miyazaki A, Takahashi H, Matsui K, Ohme-Takagi M, Saitoh H, Terauchi R, Kusano T. Tobacco EFT1, Atranscriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine signaling pathway. Plant Mol Biol, 2005, 59: 435–448[25]Marathe R, Guan Z, Anandalakshmi R, Zhao H, Dinesh-Kumar S P. Study of Arabidopsis thaliana resistome in response to cucumber mosaic virus infection using whole genome microarray. Plant Mol Biol, 2004, 55: 501–520[26]Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136: 2734–2746[27]Takatsuji H, Matsumoto T. Target-sequence recognition by separate-type Cys2/His2 zinc finger proteins in plants. J Biol Chem, 1996, 271: 23368–23373[28]Takatsuji H, Nakamura N, Katsumoto Y. A new family of zinc finger proteins in petunia: structure, DNA sequence recognition, and floral organ-specific expression. Plant Cell, 1994, 6: 947–958 |
[1] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[2] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[3] | 王珍, 张晓莉, 孟晓静, 姚梦楠, 缪文杰, 袁大双, 朱冬鸣, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜丝裂原活化蛋白激酶7基因(BnMAPK7)上游调控因子的鉴定[J]. 作物学报, 2021, 47(12): 2379-2393. |
[4] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[5] | 高世武,傅志伟,陈云,林兆里,许莉萍,郭晋隆. 甘蔗热带种金属硫蛋白家族基因的克隆及响应重金属胁迫的表达分析[J]. 作物学报, 2020, 46(02): 166-178. |
[6] | 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016. |
[7] | 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392. |
[8] | 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379. |
[9] | 罗绍兰,廉小平,蒲敏,白晓璟,王玉奎,曾静,施松梅,张贺翠,朱利泉. 甘蓝锌指蛋白转录因子BoC2H2的克隆、定位与表达分析[J]. 作物学报, 2018, 44(11): 1650-1660. |
[10] | 段方猛, 罗秋兰, 鲁雪莉, 齐娜伟, 刘宪舜, 宋雯雯. 玉米油菜素甾醇生物合成关键酶基因ZmCYP90B1的克隆及其对逆境胁迫的响应[J]. 作物学报, 2018, 44(03): 343-356. |
[11] | 苏亚春,王竹青,李竹,刘峰,许莉萍,阙友雄,戴明剑,陈允浩. 甘蔗过氧化物酶基因ScPOD02的克隆与功能鉴定[J]. 作物学报, 2017, 43(04): 510-521. |
[12] | 苏亚春,黄珑,凌辉,王竹青,刘峰,苏炜华,黄宁,吴期滨,高世武,阙友雄. 甘蔗CDK基因的cDNA全长克隆与表达分析[J]. 作物学报, 2017, 43(01): 42-50. |
[13] | 苏炜华,刘峰,黄珑,苏亚春,黄宁,凌辉,吴期滨,张华,阙友雄. 甘蔗Ca2+/H+反向运转体基因的克隆与表达分析[J]. 作物学报, 2016, 42(07): 1074-1082. |
[14] | 刘峰,苏炜华,黄珑,肖新换,黄宁,凌辉,苏亚春,张华,阙友雄. 甘蔗Na+/H+逆转运蛋白基因的克隆与表达分析[J]. 作物学报, 2016, 42(04): 501-512. |
[15] | 陈红,牛海峡,王文静,马浩然,李加纳,柴友荣,张洪博. 酵母表面展示系统的改进及其在筛选烟草PMT基因启动子结合蛋白中的应用[J]. 作物学报, 2014, 40(12): 2081-2089. |
|