欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (03): 378-385.doi: 10.3724/SP.J.1006.2015.00378

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花溶血磷酸酯酰转移酶(LPAT)家族基因的发掘和表达分析

丁检,吴双,蔡彩平,郭旺珍*   

  1. 南京农业大学作物遗传与种质创新国家重点实验室,江苏南京 210095
  • 收稿日期:2014-08-22 修回日期:2014-12-19 出版日期:2015-03-12 网络出版日期:2015-01-12
  • 通讯作者: 郭旺珍, E-mail: moelab@njau.edu.cn, Tel: 025-84396523
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB109300)和江苏高校优势学科建设工程资助项目(PAPD, 010-809001)资助。

Genome-wide Identification of Lysophosphatidic Acid Acyltransferase Gene Family and Their Expression Analysis in Cotton

DINGJian,WUShuang,CAICai-Ping,GUO Wang-Zhen*   

  1. State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2014-08-22 Revised:2014-12-19 Published:2015-03-12 Published online:2015-01-12
  • Contact: 郭旺珍, E-mail: moelab@njau.edu.cn, Tel: 025-84396523

摘要:

棉花油脂合成相关代谢在控制油分形成、纤维发育等进程中起着重要作用。溶血磷脂酰基转移酶(LPAT)是植物油脂代谢过程中的一个关键酶。本研究利用雷蒙德氏棉全基因组数据库,通过生物信息学技术,鉴定并获得8个棉花LPAT家族基因的全序列和染色体定位等信息。通过序列比对进行系统进化和分类分析,明确这8个家族基因分布在6条染色体上,分为4亚类,其中第I类和第III类中各含2个基因、第II类1个、第IV类3个。组织表达分析表明这8个基因在棉花营养和生殖阶段均表现表达多样性。LPAT6LPAT8在17d胚珠中表达水平很高,推测在油脂合成代谢调控中起重要作用。8个LPAT基因均在纤维中优势表达,其中LPAT2LPAT3、和LPAT4表达水平更高,推测LPAT家族基因的表达参与棉纤维发育进程。

关键词: 油脂代谢, LPAT基因家族, 染色体定位, 系统分析, 表达特征

Abstract:

Metabolism related to lipids synthesis plays an important role inregulating both oil biosynthesis and fiber development in cotton. Lysophosphatidic acid acyltransferase (LPAT) is a key enzyme in oil biosynthesis pathway in plant. In this study, eight cotton LPAT family genes were identified and their gene sequences, chromosome location were obtained, based on G. raimondii genome database (http://www.phytozome.net/) and bioinformatic method. These LPAT members were anchored on six chromosomes in G. raimondii. Phylogenetic analysis showed that LPAT candidate genes were classified into four groups, with two members each in group I and group III, one in group II,and three in group IV. The expression patterns of LPAT genes revealedtheir important roles in diverse functions in the developmental stages of vegetative and reproductive growth in cotton. LPAT6 and LPAT8 showed the highest expression level in ovules at 17days post-anthesis, which might play an important role in regulating oil biosynthesis. Eight genes showed the preferential expression level in fiber development stages. Among them,LPAT2, LPAT3, and LPAT4 showed the higher expression level in fiber than in other tissues and organs, implying their association with cotton fiber development.

Key words: Lipids metabolism, LPAT gene family, Chromosome location, Phylogenetic analysis, Expression pattern

[1]Chapman K D, Ohlrogge J B. Compartmentation of triacylglycerol accumulation in plants. J Biol Chem, 2012,287: 2288–2294



[2]Weselake R J, Taylor D C, Rahman M H, Shah S, Laroche A, McVetty P B, Harwood J L. Increasing the flow of carbon into seed oil. Biotechnol Adv, 2009, 27: 866–878



[3]Kim H U, Li Y, Huang A H. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell, 2005, 17: 1073–1089



[4]Arroyo-Caro J M, Chileh T, Kazachkov M, Zou J, Alonso D L, Garcia-Maroto F. The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Plant Sci, 2013, 199-200: 29–40



[5]陈四龙, 黄家权, 雷永, 任小平, 文奇根, 陈玉宁, 姜慧芳, 晏立英, 廖伯寿. 花生溶血磷脂酸酰基转移酶基因的克隆与表达分析. 作物学报, 2012, 38: 245–255



Chen S L, Huang J Q, Lei Y, Ren X P, Wen Q G, Chen Y N, Jiang H F, Yan L Y, Liao B S. Cloning and expression analysis of lysophosphatidic acid acyltransferase (LPAT) encoding gene in peanut. Acta Agron Sin, 2012, 38: 245–255 (in Chinese with English abstract)



[6]Roscoe TJ. Identification of acyltransferases controlling triacylglycerol biosynthesis in oilseeds using a genomics-based approach. Eur J Lipid Sci Tech, 2005, 107: 256–262



[7]Kim H U, Huang A H. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol, 2004, 134: 1206–1216



[8]Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995, 7: 957–970



[9]Zou J, Katavic V, Giblin E M, Barton D L, MacKenzie S L, Keller W A, Hu X, Taylor D C. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell, 1997, 9: 909–923



[10]Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol, 2010, 152: 670–684



[11]冷雪, 贾银华, 杜雄明. 棉纤维伸长阶段上、下调基因及相关通路的分析.作物学报, 2010,36: 1891–1901



Leng X, Jia Y H, Du X M. Up- and down-regulated genes during cotton fiber elongation and relative pathway. Acta Agron Sin, 2010, 36: 1891–1901 (in Chinese with English abstract)



[12]Qin Y M, Hu C Y, Pang Y, Kastaniotis A J, Hiltunen J K, Zhu Y X. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell, 2007, 19: 3692–3704



[13]赵永国, 郭瑞星. 棉子含油量研究进展与高油棉花育种可行性分析. 棉花学报, 2011,23: 184–188



Zhao Y G, Guo R X. Research progress on oil content of cottonseed and feasibility of high oil content breeding in Upland Cotton. Cotton Sci, 2011, 23: 184–188 (in Chinese with English abstract)



[14]张欢, 孟永彪. 用棉籽油制备生物柴油. 化工进展, 2007, (1): 86–89



Zhang H, Meng Y B. Mass production of bio-diesel from cottonseed oil via transesterification. Chem Ind Eng Prog, 2007, 1: 86–89 (in Chinese with English abstract)



[15]Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, ur Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MF, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KF, Peterson DG, Rokhsar DS, Wang X, Schmutz J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492: 423–427



[16]Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer E L, Tate J, Punta M. Pfam: the protein families database. Nucl Acids Res, 2014, 42: D222–D230



[17]Eddy S R. Accelerated Profile HMM Searches. PLoS Comput Biol, 2011, 7: e1002195



[18]Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023–1026



[19]Thompson J D, Gibson T J, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucl Acids Res, 1997, 25: 4876–4882



[20]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol,2011, 28: 2731–2739



[21]蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA. 棉花学报, 2003, 15: 166–167



Jiang J X, Zhang T Z. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci, 2003, 15: 166–167



[22]Xu Y H, Wang J W, Wang S, Wang J Y, Chen X Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant physiol, 2004, 135: 507–515



[23]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–△△CT method. Methods, 2001,25:402–408



[24]Shindou H, Hishikawa D, Harayama T, Yuki K, Shimizu T. Recent progress on acyl CoA: lysophospholipid acyltransferase research. J Lipid Res, 2009, 50(Suppl): S46–51



[25]Zhao L,Lv Y D, Cai C P, Tong X C, Chen X D, Zhang W, Du H, Guo X H, Guo W Z. New world tetraploid cottons contain genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information.BMC Genomics, 2012, 13: 539



[26]Wendel J F. New World tetraploid cottons contain old world cytoplasm. Proc Natl Acad Sci USA,1989, 86: 4132–4136



[27]Wendel A A, Lewin T M, Coleman R A. Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta, 2009, 1791: 501–506



[28]Brown A P, Slabas A R, Denton H. Substrate selectivity of plant and microbial lysophosphatidic acid acyltransferases. Phytochemistry, 2002, 61: 493–501



[29]戚维聪. 油菜发育种子中油脂积累与Kennedy途径酶活性的关系研究.南京农业大学硕士学位论文, 江苏南京, 2008



Qi W C. Studies on correlations of developing seed lipid accumulation with Kennedy pathway enzyme activities in Brassica napus. MS Thesis of Nanjing Agriculture University, Nanjing, China, 2008 (in Chinese with English abstract)



[30]Wanjie S W, Welti R, Moreau R A, Chapman K D. Identification and quantification of glycerolipids in cotton fibers: reconciliation with metabolic pathway predictions from DNA databases. Lipids, 2005, 40: 773–785

[1] 陈夕军, 唐滔, 李丽丽, 陈宸, 陈煜文, 张亚芳, 左示敏. 水稻多聚半乳糖醛酸酶抑制蛋白家族OsPGIP结构及基因表达特征
分析
[J]. 作物学报, 2020, 46(12): 1884-1893.
[2] 周向阳,赵亮,狄佳春,陈旭升. 2个抗虫棉的外源Bt基因分子鉴定及其染色体定位[J]. 作物学报, 2019, 45(9): 1440-1445.
[3] 陈旭升,狄佳春,周向阳,赵亮. 陆地棉高秆突变体的激素变化与Tp基因的染色体定位[J]. 作物学报, 2017, 43(06): 935-939.
[4] 乔麟轶,李欣,畅志坚,张晓军,詹海仙,郭慧娟,李建波,常建忠,郑军. 粗山羊草全基因组Aux/IAA基因家族的分离、染色体定位及序列分析[J]. 作物学报, 2014, 40(12): 2059-2069.
[5] 李丽,汪顺峰,刘芳,唐世义,谭兆云,张建,滕中华,刘大军,张正圣. 陆地棉转录因子的染色体定位[J]. 作物学报, 2012, 38(08): 1361-1368.
[6] 薛飞,王长有,张丽华,张宏,李浩,王亚娟,刘新伦,吉万全. 来自野生二粒小麦的抗白粉病基因PmAS846及其染色体定位和分子标记分析[J]. 作物学报, 2012, 38(04): 589-595.
[7] 佘茂云, 陈朵朵, 冯晨, 杜丽璞, 叶兴国. 小麦亚硝酸还原酶基因及调控序列克隆、定位和表达分析[J]. 作物学报, 2011, 37(01): 28-39.
[8] 秦伟,赵光耀,曲志才,张立超,段佳磊,李爱丽,贾继增,孔秀英. 小麦白粉病菌诱导的TaWRKY34基因的鉴定与分析[J]. 作物学报, 2010, 36(2): 249-255.
[9] 庄丽芳;宋立晓;冯祎高;钱保俐;徐海滨;裴自友;亓增军. 小麦EST-SSR标记的开发和染色体定位及其在追踪黑麦染色体中的应用[J]. 作物学报, 2008, 34(06): 926-933.
[10] 张磊;张宝石;周荣华;高丽峰;赵光耀;宋彦霞;贾继增. 小麦细胞分裂素氧化/脱氢酶基因(TaCKX2)的克隆及其遗传作图[J]. 作物学报, 2007, 33(09): 1419-1425.
[11] 王润奇;高俊华;关中波;毛丽萍. 谷子几种农艺性状基因染色体定位及连锁关系的初步研究[J]. 作物学报, 2007, 33(01): 9-14.
[12] 王长有;吉万全;张改生;王秋英;蔡东明;薛秀庄. 小麦种质N9134抗白粉病基因的SSR标记和染色体初步定位[J]. 作物学报, 2007, 33(01): 163-166.
[13] 李韬;张增艳;林志珊;陈孝;高珊;辛志勇. 小麦抗白粉病新基因的AFLP和SSR标记及其染色体定位[J]. 作物学报, 2005, 31(09): 1105-1109.
[14] 徐大勇;黄志仁;黄友圣;许如根;周美学. 大麦多节矮秆性状的研究——II.多节矮秆性状的染色体定位[J]. 作物学报, 1999, 25(02): 150-156.
[15] 余毓君. 平湖剑子麦、洪湖大太宝、崇阳红麦、延岗坊主、万年2号抗赤霉病性基因分析[J]. 作物学报, 1991, 17(04): 248-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!