作物学报 ›› 2015, Vol. 41 ›› Issue (03): 367-377.doi: 10.3724/SP.J.1006.2015.00367
巫桂芬1,2,徐鲜均3,徐建堂1,陶爱芬1,张立武1,魏丽真4,潘漠5,方平平1,林荔辉1,祁建民1,*
WU Gui-Fen1,2,XU Xian-Jun3,XU Jian-Tang1,TAO Ai-Fen1,ZHANG Li-Wu1,WEI Li-Zhen4,PAN Mo5,FANG Ping-Ping1,LIN Li-Hui1,QI Jian-Min1,*
摘要:
以国内外引进保存的231份黄麻种质资源为材料,分别采用SRAP、ISSR、SSR分子标记和编程DNA指纹图谱分析软件,绘制黄麻遗传资源基因组DNA指纹图谱。结果表明,通过筛选出的35对SRAP引物对231份黄麻品种进行标记分析,获得96份黄麻品种DNA指纹图谱;11个ISSR多态性引物对96份材料进行DNA标记分析,获得45份黄麻品种DNA指纹图谱;49对SSR多态性引物对48份黄麻品种进行DNA标记分析,获得13份黄麻品种DNA指纹图谱,累计完成了154份黄麻品种基因组DNA分子指纹图谱绘制。每一个被识别的品种都具有其独特的分子“身份证”。其他77份地方品种因与部分品种遗传相似性过高,未能被识别,表明黄麻地方品种存在较为严重的同种异名现象。
[1]李宗道. 麻类的理论与技术. 上海: 上海科学技术出版社, 1980. pp 388–389Li Z D. Theory and Technology of Hemp. Shanghai: Shanghai Scientific and Technical Publishers, 1980. pp 388–389 (in Chinese)[2]祁建民, 李维明, 吴为人. 黄麻的起源与进化研究. 作物学报, 1997, 23: 677–682Qi J M, Li W M, Wu W R. Origin and evolution of jute. Acta Agron Sin, 1997, 23: 677–682 (in Chinese)[3]李爱青. 肯尼亚黄麻红麻种质资源的考察报告. 中国麻作, 1990, 1: 16–20Li A Q. The visiting report of jute and kenaf germplasms in Kenya. China’s Fiber Crops, 1990, 12(1): 16–21 (in Chinese)[4]徐静, 董化玲. 黄麻服饰用纺织产品开发及前景. 纺织科技进展. 科学通报, 2005, 50: 904–911Xu J, Dong H L. Textile product development and foregrounds for jute dress: textile science and technology progress. Sci Bull, 2005, 50: 904–911[5]黎宇, 程新奇, 郭安平. 我国黄麻种质资源的研究进展概述. 中国麻作, 1998, 20(3): 38–41Li Y, Chong X Q, Guo A P. Summary of the progress of jute germplasm resources in China. China’s Fiber Crops, 1998, 20(3): 38–41 (in Chinese)[6]Smartt J, Gregory W C, Gregory M P. The genomes of Arachis hypogaea: cytogenetiestudies of putative genome donors. Euphytiea, 1978, 27: 665–675[7]程新奇, 郭安平, 肖瑞芝, 孙家曾. 黄麻种质资源的鉴定与利用分析. 中国麻作, 1993, (4): 1–8Cheng X Q, Guo A P, Xiao R Z, Sun J Z. identification and utilization analysis of Jute germplasm resources. China’s Fiber Crops, 1993, (4): 1–8 (in Chinese)[8]Latif M A, Rafii Yusop M, Motiur Rahman M. Microsatellite and minisatellite markers based DNA fingerprinting and genetic diversity of blast and ufra resistant genotypes. Comptes Rendus Biol, 2011, 334: 282–289[9]Chuang H Y, Huu-Shen L U R, Kae-Kang H W U, Chang M C. Authentication of domestic Taiwan rice varieties based on fingerprinting analysis of microsatellite DNA markers. Bot Studies, 2011, 52(4): 31–40[10]Ashkenazi V, Chani E, Lavi U. Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genome, 2001, 44: 50–62[11]Ercisli S, Ipek A, Barut E. SSR marker-based DNA fingerprinting and cultivar identification of olives (Olea europaea). Biocheml Genet, 2011, 49: 555–561[12]Yu H F, Wang J S, Zhao Z Q, Sheng X G, Gu H H. DNA fingerprinting and genetic purity testing of a new broccoli hybrid using SSR markers. Seed Sci Technol, 2013, 41: 464–468[13]Rodriguez M J B. Microsatellite DNA fingerprinting technology for coconut and oil palm. Philippine J Crop Sci, 2011, 10: 88–95[14]Onasanya A, Basso A, Somado E A, Gasore E.R, Nwilene F E, Nwilene F E, Ingelbrecht I L, Lamo J, Wydra K, Ekperigin M M, Langa M, Oyelakin O, Oyelakin O, Sere Y, Winter S, Onasanya R O. Development of a combined molecular diagnostic and DNA fingerprinting technique for rice bacteria pathogens in Africa. Biotechnology, 2010, 9: 89–105[15]Case C, Kandola K, Chui L, Li V, Nix N, Johnson R. Examining DNA fingerprinting as an epidemiology tool in the tuberculosis program in the Northwest Territories, Canada. Intl J Circumpolar Health, 2013, 9(3): 72[16]Tyler K D, Wang G, Tyler S D, Johnson W M. Factors affecting reliability and reproducibility of amplification-based DNA fingerprinting of representative bacterial pathogens. J Clinical Microbiol, 1997, 35: 339[17]Cantini C, Iezzoni A F, Lamboy W F, Boritzki M, Struss D. DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Am Soc Hort Sci, 2001, 126: 205–209[18]Wünsch A, Hormaza J I. Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica, 2002, 125: 59–67[19]Paglia G, Morgante M. PCR-based multiplex DNA fingerprinting techniques for the analysis of conifer genomes. Mol Breed, 1998, 4: 173–177[20]Vaneechoutte M. DNA fingerprinting techniques for microorganisms. Mol Biotechnol, 1996, 6: 115–142[21]Partis L, Croan D, Guo Z, Coldham C T, Murby J. Evaluation of a DNA fingerprinting method for determining the species origin of meats. Meat Sci, 2000, 54: 369–376[22]Prevost A, Wilkinson M J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet, 1999, 98: 107–112[23]Bonito G, Isikhuemhen O S, Vilgalys R. Identification of fungi associated with municipal compost using DNA-based techniques. Bioresource Technol, 2010, 101: 1021–1027[24]徐建堂, 祁建民, 方平平, 李爱青, 林荔辉, 吴建梅, 陶爱芬. CTAB法提取红麻总DNA技术优化与ISSR和SRAP扩增效果. 中国麻业科学, 2007, 29(4): 179–183Xu J T, Qi J M, Fang P P, Li A Q, Lin L H, Wu J M, Tao A F. Optimized CTAB protocol for extracting genomic DNA from kenaf and improved PCR amplifications of ISSR and SRAP. Plant Fiber Sci China, 2007, 29(4): 179–183 (in Chinese with English abstract)[25]Zhang G Q, QI J M, Zhang X C, Fang P P, Su J G, Tao A F, Lan T, Wu W R, Liu A M. A genetic linkage map of kenaf (Hibiscus cannabinus L.) based on SRAP, ISSR and RAPD markers. Agric Sci China, 2011, 10: 1346–1353 |
[1] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[2] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[3] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[4] | 郭艳春, 姚嘉瑜, 张镕斌, 陈思远, 何青垚, 陶爱芬, 方平平, 祁建民, 张列梅, 张立武. 中国黄麻炭疽病病原菌的分离鉴定及系统发育分析[J]. 作物学报, 2022, 48(3): 770-777. |
[5] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[6] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[7] | 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. |
[8] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[9] | 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284. |
[10] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[11] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
[12] | 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93. |
[13] | 陶爱芬,游梓翊,徐建堂,林荔辉,张立武,祁建民,方平平. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证[J]. 作物学报, 2020, 46(7): 987-996. |
[14] | 田红丽, 杨扬, 王璐, 王蕊, 易红梅, 许理文, 张云龙, 葛建镕, 王凤格, 赵久然. 兼容型maizeSNP384标记筛选与玉米杂交种DNA指纹图谱构建[J]. 作物学报, 2020, 46(7): 1006-1015. |
[15] | 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913. |
|