[1]Bailey D M, Bailey R M. The relationship of pericarp to tenderness in sweet corn. Proc Am Soc Hortic Sci, 1938, 36: 555–559
[2]Ito G M, Brewbaker J L. Genetic advance through mass selection for tenderness in sweet corn. J Am Hortic Sci, 1981, 106: 496–499
[3]Hoenisch R W, Davis R M. Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot. Plant Dis, 1994, 78: 517–519
[4]Tracy W F, Galinai W C. Thickness and cell layer number of the pericarp of sweet corn and some of its relatives. HortScience, 1987, 22: 645–647
[5]Helm J L, Zuber M S. Inheritance of pericarp thickness in corn belt maize. Crop Sci, 1972, 12: 428–430
[6]Ho L C, Kannenberg W, Hunter R B. Inheritance of pericarp thickness in short season maize inbreds. Can J Genet Cytol, 1975, 17: 621–629
[7]Ito G M, Brewbaker J L. Genetic analysis of pericarp thickness in progenies of eight corn hybrids. J Am Soc Hortic Sci, 1991, 116: 1072–1077
[8]Choe E, Rocheford T. Marker assisted selection and breeding for desirable thinner pericarp thickness and ear traits in fresh market waxy corn germplasm. Euphytica, 2012, 183: 243–260
[9]Helm J L, Zuber M S. Pericarp thickness on dent corn inbred lines. Crop Sci, 1969, 9: 803–804
[10]王晓明, 谢振文, 曾慕衡, 乐素菊. 超甜玉米果穗形态和品质性状的杂种优势及遗传特性分析. 中国农业科学, 2005, 38: 1931–1936
Wang X M, Xie Z W, Zeng M H, Le S J. Heterosis and inheritance analysis of ear shape and quality characters in super sweet corn. Sci Agric Sin, 2005, 38: 1931–1936 (in Chinese with English abstract)
[11]刘鹏飞, 蒋锋, 乐素菊, 张姿丽, 陈青春, 张媛, 王晓明. 甜玉米果皮厚度主基因+多基因遗传效应分析. 西北农林科技大学学报(自然科学版), 2013, 41(7): 43–48
Liu P F, Jiang F, Le S J, Zhang Z L, Chen Q C, Zhang Y, Wang X M. Major genes and polygenes inheritance for pericarp thickness of sweet corn. J Northwest A&F Univ (Nat Sci Edn), 2013, 41(7): 43–48 (in Chinese with English abstract)
[12]Wang B, Brewbaker J L. Quantitative trait loci affecting pericarp thickness of corn kernels. Maydica, 2001, 46: 159–165
[13]李余良, 林瑞德, 胡建广, 刘建华. 用显微测微尺测定超甜玉米果皮厚度初报. 广东农业科学, 2004, (增刊): 48–49
Li L Y, Lin R D, Hu J G, Liu J H. A preliminary report on pericarp thickness determination by micrometer in sweet corn. Guangdong Agric Sci, 2004, (suppl): 48–49 (in Chinese)
[14]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018
[15]Sanguinetti C J, Neto E D, Simpson A J G. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques, 1994, 17: 914–921
[16]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181
[17]Lincoln S E, Daly M J, Lander E S. Mapping Genes Controlling Quantitative Traits Using MAPMAKER/QTL. Whitehead Institute for Biomedical Research, Cambridge, MA. 1993
[18]Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78
[19]苏成付, 赵团结, 盖钧镒. 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010, 36: 1100–1107
Su C F, Zhao T J, Gai J Y. Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agron Sin, 2010, 36: 1100–1107 (in Chinese with English abstract)
[20]Utz H F, Melchinger A E. PlabQTL: A program for composite interval mapping of QTL. J Agric Genomics, 1996, 2: 1–5
[21]Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative trait loci in maize: I. Numbers, genomic distribution and types of gene action. Genetics, 1987, 116: 113–125
[22]Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23: 1527–1536
[23]Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721–723
[24]Helm J L, Zuber M S. Effect of harvest date on pericarp thickness in dent corn. Can J Plant Sci, 1970, 50: 411–413
[25]张士龙, 周淑梅, 王青峰, 李小琴. 玉米籽粒果皮厚度变化规律研究. 华南农业大学学报, 2008, 29(1): 10–13
Zhang S L, Zhou S M, Wang Q F, Li X Q. Research on variation of pericarp thickness of sweet maize kernel. J South China Agric Univ, 2008, 29(1): 10–13 (in Chinese with English abstract)
[26]乐素菊, 肖德兴, 刘鹏飞, 曾慕衡, 王伟权, 王晓明. 超甜玉米果皮结构与籽粒柔嫩性的关系. 作物学报, 2011, 37: 2111–2116
Yue S J, Xiao D X, Liu P F, Zeng M H, Wang W Q, Wang X M. Relationship between pericarp structure and kernel tenderness in super sweet corn. Acta Agron Sin, 2011, 37: 2111–2116 (in Chinese with English abstract)
[27]姚坚强, 俞琦英, 王美兴, 张莲英, 朱金庆. 春播超甜玉米籽粒果皮厚度与可溶性总糖含量在灌浆期间的变化. 浙江农业学报, 2012, 24: 193–196
Yao J Q, Yu Q Y, Wang M X, Zhang L Y, Zhu J Q. Changes of pericarp thickness and soluble sugar during the kernel filling process of spring super-sweet corn. Acta Agric Zhejiangensis, 2012, 24: 193–196 (in Chinese with English abstract)
[28]Brewbaker J L, Larish L B, Zan G H. Pericarp thickness of the indigenous American races of maize. Maydica, 1996, 41: 105–111
[29]Richardson D L. Pericarp thickness in popcorn. Agron J, 1960, 52: 77–80
[30]Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. biomass and grain yield. Genetics, 2001, 158: 1737–1753
[31]Carlborg O, Haley C S. Epistasis: too often neglected in complex trait studies? Nat Rev Genet, 2004, 5: 618–625
[32]Gómez E, Royo J, Muñiz L M, Sellam O, Paul W, Gerentes D, Barrero C, López M, Perez P, Hueros G. The maize transcription factor myb-related protein-1 is a key regulator of the differentiation of transfer cells. Plant Cell, 2009, 21: 2022–2035
[33]Selinger D, Chandler V L. A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway. Plant Cell, 1999, 11: 5–14
[34]Carey C, Strahle J T, Selinger D, Chandler V. Mutations in the pale aleurone color 1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell, 2004, 16: 450–464
[35]Buckner B, Miquel P S, Janick-Buckner D, Bennetzen J L. The y1 gene of maize codes for phytoene synthase. Genetics, 1996, 143: 479–488
[36]Matusova R, Rani K, Verstappen F W A, Franssen M C R, Beale M H, Bouwmeester H J. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol, 2005, 130: 920–934 |