作物学报 ›› 2015, Vol. 41 ›› Issue (03): 359-366.doi: 10.3724/SP.J.1006.2015.00359
于永涛,李高科,祁喜涛,李春艳,毛笈华,胡建广
YU Yong-Tao,LI Gao-Ke,QI Xi-Tao,LI Chun-Yan,MAO Ji-Hua,HU Jian-Guang*
摘要:
果皮厚度是影响甜玉米口感的一个重要因素。发掘果皮厚度的基因资源、了解玉米果皮厚度的遗传机制,是指导其育种的基础。本研究以日超-1 (薄果皮,56.57 μm) × 1021 (厚果皮,100.23 μm)的190个BC1F2家系为作图群体,分别采用2种遗传模型检测QTL。基于复合区间作图(CIM)共检测到3个影响果皮厚度的QTL,位于3.01、6.01、8.05区段,分别解释8.6%、16.0%和7.2%的表型变异,其中3.01和8.05处QTL以加性效应为主;基于混合线性CIM模型(MCIM)共检测到5个影响果皮厚度的QTL,其中除8.05处QTL为加性QTL外,另有2对加×加上位性互作QTL,1对是2.01和6.05处QTL之间的互作,另1对则是5.06和6.01处QTL间的互作。这2对互作QTL分别解释了6.63%和12.48%的表型变异率。本结果表明,加性效应和上位性互作效应等都在果皮厚度的形成和遗传中起重要作用。能够检测QTL上位互作的MCIM模型更适用于果皮厚度QTL定位。本研究还在其中4个QTL的区域内分别检索到胚乳中色素合成以及细胞转变的相关候选基因,这些基因的表达是否与果皮厚度的变异有关值得进一步研究。
[1]Bailey D M, Bailey R M. The relationship of pericarp to tenderness in sweet corn. Proc Am Soc Hortic Sci, 1938, 36: 555–559[2]Ito G M, Brewbaker J L. Genetic advance through mass selection for tenderness in sweet corn. J Am Hortic Sci, 1981, 106: 496–499[3]Hoenisch R W, Davis R M. Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot. Plant Dis, 1994, 78: 517–519[4]Tracy W F, Galinai W C. Thickness and cell layer number of the pericarp of sweet corn and some of its relatives. HortScience, 1987, 22: 645–647[5]Helm J L, Zuber M S. Inheritance of pericarp thickness in corn belt maize. Crop Sci, 1972, 12: 428–430[6]Ho L C, Kannenberg W, Hunter R B. Inheritance of pericarp thickness in short season maize inbreds. Can J Genet Cytol, 1975, 17: 621–629[7]Ito G M, Brewbaker J L. Genetic analysis of pericarp thickness in progenies of eight corn hybrids. J Am Soc Hortic Sci, 1991, 116: 1072–1077[8]Choe E, Rocheford T. Marker assisted selection and breeding for desirable thinner pericarp thickness and ear traits in fresh market waxy corn germplasm. Euphytica, 2012, 183: 243–260[9]Helm J L, Zuber M S. Pericarp thickness on dent corn inbred lines. Crop Sci, 1969, 9: 803–804[10]王晓明, 谢振文, 曾慕衡, 乐素菊. 超甜玉米果穗形态和品质性状的杂种优势及遗传特性分析. 中国农业科学, 2005, 38: 1931–1936Wang X M, Xie Z W, Zeng M H, Le S J. Heterosis and inheritance analysis of ear shape and quality characters in super sweet corn. Sci Agric Sin, 2005, 38: 1931–1936 (in Chinese with English abstract)[11]刘鹏飞, 蒋锋, 乐素菊, 张姿丽, 陈青春, 张媛, 王晓明. 甜玉米果皮厚度主基因+多基因遗传效应分析. 西北农林科技大学学报(自然科学版), 2013, 41(7): 43–48Liu P F, Jiang F, Le S J, Zhang Z L, Chen Q C, Zhang Y, Wang X M. Major genes and polygenes inheritance for pericarp thickness of sweet corn. J Northwest A&F Univ (Nat Sci Edn), 2013, 41(7): 43–48 (in Chinese with English abstract)[12]Wang B, Brewbaker J L. Quantitative trait loci affecting pericarp thickness of corn kernels. Maydica, 2001, 46: 159–165[13]李余良, 林瑞德, 胡建广, 刘建华. 用显微测微尺测定超甜玉米果皮厚度初报. 广东农业科学, 2004, (增刊): 48–49Li L Y, Lin R D, Hu J G, Liu J H. A preliminary report on pericarp thickness determination by micrometer in sweet corn. Guangdong Agric Sci, 2004, (suppl): 48–49 (in Chinese)[14]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018[15]Sanguinetti C J, Neto E D, Simpson A J G. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques, 1994, 17: 914–921[16]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181[17]Lincoln S E, Daly M J, Lander E S. Mapping Genes Controlling Quantitative Traits Using MAPMAKER/QTL. Whitehead Institute for Biomedical Research, Cambridge, MA. 1993[18]Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78[19]苏成付, 赵团结, 盖钧镒. 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010, 36: 1100–1107Su C F, Zhao T J, Gai J Y. Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agron Sin, 2010, 36: 1100–1107 (in Chinese with English abstract)[20]Utz H F, Melchinger A E. PlabQTL: A program for composite interval mapping of QTL. J Agric Genomics, 1996, 2: 1–5[21]Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative trait loci in maize: I. Numbers, genomic distribution and types of gene action. Genetics, 1987, 116: 113–125[22]Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23: 1527–1536[23]Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721–723[24]Helm J L, Zuber M S. Effect of harvest date on pericarp thickness in dent corn. Can J Plant Sci, 1970, 50: 411–413[25]张士龙, 周淑梅, 王青峰, 李小琴. 玉米籽粒果皮厚度变化规律研究. 华南农业大学学报, 2008, 29(1): 10–13Zhang S L, Zhou S M, Wang Q F, Li X Q. Research on variation of pericarp thickness of sweet maize kernel. J South China Agric Univ, 2008, 29(1): 10–13 (in Chinese with English abstract)[26]乐素菊, 肖德兴, 刘鹏飞, 曾慕衡, 王伟权, 王晓明. 超甜玉米果皮结构与籽粒柔嫩性的关系. 作物学报, 2011, 37: 2111–2116Yue S J, Xiao D X, Liu P F, Zeng M H, Wang W Q, Wang X M. Relationship between pericarp structure and kernel tenderness in super sweet corn. Acta Agron Sin, 2011, 37: 2111–2116 (in Chinese with English abstract)[27]姚坚强, 俞琦英, 王美兴, 张莲英, 朱金庆. 春播超甜玉米籽粒果皮厚度与可溶性总糖含量在灌浆期间的变化. 浙江农业学报, 2012, 24: 193–196Yao J Q, Yu Q Y, Wang M X, Zhang L Y, Zhu J Q. Changes of pericarp thickness and soluble sugar during the kernel filling process of spring super-sweet corn. Acta Agric Zhejiangensis, 2012, 24: 193–196 (in Chinese with English abstract)[28]Brewbaker J L, Larish L B, Zan G H. Pericarp thickness of the indigenous American races of maize. Maydica, 1996, 41: 105–111[29]Richardson D L. Pericarp thickness in popcorn. Agron J, 1960, 52: 77–80[30]Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. biomass and grain yield. Genetics, 2001, 158: 1737–1753[31]Carlborg O, Haley C S. Epistasis: too often neglected in complex trait studies? Nat Rev Genet, 2004, 5: 618–625[32]Gómez E, Royo J, Muñiz L M, Sellam O, Paul W, Gerentes D, Barrero C, López M, Perez P, Hueros G. The maize transcription factor myb-related protein-1 is a key regulator of the differentiation of transfer cells. Plant Cell, 2009, 21: 2022–2035[33]Selinger D, Chandler V L. A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway. Plant Cell, 1999, 11: 5–14[34]Carey C, Strahle J T, Selinger D, Chandler V. Mutations in the pale aleurone color 1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell, 2004, 16: 450–464[35]Buckner B, Miquel P S, Janick-Buckner D, Bennetzen J L. The y1 gene of maize codes for phytoene synthase. Genetics, 1996, 143: 479–488[36]Matusova R, Rani K, Verstappen F W A, Franssen M C R, Beale M H, Bouwmeester H J. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol, 2005, 130: 920–934 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[3] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[4] | 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214. |
[5] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[6] | 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401. |
[7] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[8] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[9] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[10] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[11] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[12] | 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347. |
[13] | 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162. |
[14] | 孟鑫浩, 张靖男, 崔顺立, Charles Y.Chen, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析[J]. 作物学报, 2021, 47(10): 1874-1890. |
[15] | 颜晓军, 叶德练, 苏达, 李芳, 郑朝元, 吴良泉. 磷肥用量对甜玉米磷素吸收利用的影响[J]. 作物学报, 2021, 47(1): 169-176. |
|