作物学报 ›› 2015, Vol. 41 ›› Issue (03): 349-358.doi: 10.3724/SP.J.1006.2015.00349
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
吴秋红1,**,陈娇娇1,**,陈永兴1,周升辉1,傅琳1,张德云1,肖尧1,王国鑫1,王振忠1,王立新2,韩俊3,袁成国4,尤明山1,刘志勇1,*
WU Qiu-Hong1,**,CHEN Jiao-Jiao1,**,CHEN Yong-Xing1,ZHOU Sheng-Hui1,FU Lin1,ZHANG De-Yun1,XIAO Yao1,WANG Guo-Xin1,WANG Zhen-Zhong1, WANG Li-Xin2,HAN Jun3,YUAN Cheng-Guo4,YOU Ming-Shan1,LIU Zhi-Yong1,*
摘要:
小麦穗部性状与单株产量密切相关。本研究以小麦骨干亲本燕大1817与优良品系北农6号衍生的269个重组自交系为材料,通过在北京和河北石家庄的2年田间试验数据,利用本实验室已构建的高密度SNP和SSR遗传连锁图谱进行穗长、穗粒数和穗粒重QTL定位。采用完备复合区间作图法共检测到29个穗部性状加性效应QTL,其中10个穗长QTL分布于1B、2D、3A、3B、4A、5A、5B、6A和7D染色体上,解释的表型变异率为2.96%~9.63%,QSl.cau-4A.2在所有5个环境中均能被检测到,解释的表型变异为5.89%~9.62%,另有7个QTL能在2个或2个以上环境中被检测到;8个穗粒数相关QTL分布于1A、3A、3D、4A和5B染色体上,解释的表型变异为4.06%~11.17%,为单个环境QTL。11个与穗粒重相关QTL分布于1A、1B、2A、2D、3A、4D、5A、5B和6B染色体上,解释的表型变异为2.79%~16.12%,其中QGws.cau-1B、QGws.cau-3A和QGws.cau-6B.2在2个或者2个以上环境中能被检测到。另外,鉴定出6个分布于1A、2D、3A、4A和5B染色体上的QTL富集区段。
[1]Giura A, Saulescu N N. Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica, 1996, 89: 77–80[2]Börner A, Schumann E, Fiirste A, Cöster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L). Theor Appl Genet, 2002, 105: 921–936[3]Jantasuriyarat C, Vales M I, Waston C J W, Riera-Lizarazu O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L). Theor Appl Genet, 2004, 108: 261–273[4]Cui F, Ding A M, Li J, Zhao C H, Wang L, Wang X Q, Qi X L, Li X F, Li G Y, Gao J R, Wang H G. QTL detection of seven spike-related traits and their genetic correlation in wheat using two related RIL populations. Euphytica, 2012, 186: 177–192[5]Cui F, Zhao C H, Li J, Ding A M, Li X F, Bao Y G, Li J M, Ji J, Wang H G. Kernel weight per spike: what contributes to it at the individual QTL level? Mol Breed, 2012, 31: 265–278[6]姚琴, 周荣华, 潘昱名, 傅体华, 贾继增. 小麦品种偃展1号与品系早穗30重组自交系群体遗传连锁图谱构建及重要农艺性状的QTL分析. 中国农业科学, 2010, 43: 4130–4139Yao Q, Zhou R H, Pan Y M, Fu T H, Jia J Z. Construction of genetic linkage map and QTL analysis of agronomic important traits based on a RIL population derived from common wheat variety Yanzhan 1 and Zaosui 30. Sci Agric Sin, 2010, 43: 4130–4139 (in Chinese with English abstract). [7]Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Gen Genomics, 2007, 277: 31–42[8]Sourdille P, Cadalen T, Guyomarc’h H, Snape J W, Perretant M R, Charmet G, Boeuf C, Bernard S, Bernard M. An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet, 2003, 106: 530–538[9]Heidari B, Sayed-Tabatabaei B E, Saeidi G, Kearsey M, Suenaga K. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome, 2011, 54: 517–527[10]张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009, 35: 270–278Zhang K P, Xu X B, Tian J C. QTL Mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009, 35: 270–278 (in Chinese with English abstract).[11]Huang X Q, Kempf H, Ganal M W, Röder M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L). Theor Appl Genet, 2004, 109: 933–943[12]王瑾, 廖祥政, 杨学举, 周荣华, 贾继增. 人工合成小麦Am3大穗多粒QTL的发掘与利用. 植物遗传资源学报, 2008, 9: 277–282Wang J, Liao X Z, Yang X J, Zhou R H, Jia J Z. Mapping of large-spike and much-kernel QTL by using a synthetic wheat Am3 as donor. J Plant Genet Resour, 2008, 9: 277–282 (in Chinese with English abstract)[13]卢翔, 张锦鹏, 王化俊, 杨欣明, 李秀全, 李立会. 小麦-冰草衍生后代3558-2穗部相关性状的遗传分析和QTL定位. 植物遗传资源学报, 2011, 12: 86–91Lu X, Zhang J P, Wang H J, Yang X M, Li L H. Genetic analysis and QTL mapping of wheat spike traits in a derivative line 3558-2 from wheat × Agropyron cristatum offspring. J Plant Genet Resour, 2011, 12: 86–91 (in Chinese with English abstract)[14]Zhang D L, Hao C Y, Wang L F, Zhang X Y. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L). Planta, 2012, 236: 1507–1517[15]Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110: 8057–8062[16]Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B, Maccafem M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787–796[17]Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374[18]王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239–245 Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239–245 (in Chinese with English abstract).[19]曾正兵, 钟秀丽, 王道龙, 郭金耀, 赵鹏, 王晓光, 韩立帅. 冬小麦拔节后幼穗低温敏感期的鉴定. 自然灾害学报, 2006, 15: 297–300Zeng Z B, Zhong X L, Wang D L, Guo J Y, Zhao P, Wang X G, Han L S. Identification of young ear’s low temperature sensitive phase after jointing stage of winter wheat. J Nat Disasters, 2006, 15: 297–300 (in Chinese with English abstract)[20]刘璇, 王瑞丽, 周伟, 方保停, 郑宏远, 张艳林, 詹克慧. 春季低温对冬小麦穗部发育和粒重的影响. 河南农业大学学报, 2013, 47: 373–380Liu X, Wang R L, Zhou W, Fang B T, Zheng H Y, Zhang Y L, Zhan K H. Effect of spring low temperature on ear development and grain weight of winter wheat. J Henan Agric Univ, 2013, 47: 373–380 (in Chinese with English abstract).[21]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L). Theor Appl Genet, 2004, 109: 1105–1114 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[6] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[9] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[10] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[11] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[12] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[13] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[14] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[15] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
|