欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (06): 919-928.doi: 10.3724/SP.J.1006.2015.00919

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米马铃薯间作对根际微生物群落结构和多样性的影响

覃潇敏1,郑毅1,2,*,汤利1,龙光强1   

  1. 1云南农业大学资源与环境学院, 云南昆明 650201;2西南林业大学, 云南昆明650224
  • 收稿日期:2014-11-02 修回日期:2015-04-02 出版日期:2015-06-12 网络出版日期:2015-04-17
  • 基金资助:

    本研究由国家自然科学基金项目(31260504, 31460551, 41361065, 31210103906, 41201289)资助。

Effects of Maize and Potato Intercropping on Rhizosphere Microbial Community Structure and Diversity

QIN Xiao-Min1,ZHENG Yi1,2,*,TANG Li1,LONG Guang-Qiang1   

  1. 1 College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; 2 Southwest Forestry University, Kunming 650224, China
  • Received:2014-11-02 Revised:2015-04-02 Published:2015-06-12 Published online:2015-04-17

摘要:

设置3个种植处理(玉米单作、马铃薯单作和玉米马铃薯间作),通过田间试验和盆栽试验,采用Biolog技术分析了玉米马铃薯根际微生物的群落结构和功能多样性的变化情况。结果表明,与单作相比,间作处理使玉米和马铃薯根际微生物对31种碳源的平均利用率(AWCD)分别增加17.36%7.38%3.76%32.21%,其中间作马铃薯的AWCD值最高,单作玉米最低。间作玉米和间作马铃薯根际微生物群落的Shannon指数(H)Simpson指数(D)、均匀度指数(E)丰富度指数(S)均高于单作,但在间作和单作之间差异不显著。根际微生物对6类碳源的利用强度以糖类、羧酸类和氨基酸最高,并存在一定的差异。主成分和聚类分析表明,玉米与马铃薯间作改变了根际微生物的群落组成,糖类、羧酸类和氨基酸类碳源是区分单间作处理差异的敏感碳源。说明玉米马铃薯间作改变了根际微生物群落结构组成,提高了根际微生物群落功能多样性。

关键词: 玉米//马铃薯间作, 根际微生物群落, 功能多样性

Abstract:

Field and pot experiments were conducted with three planting treatments (maize monocropping, potato monocropping, maize and potato intercropping) to investigate the changes of composition and function diversity of rhizosphere microbial community of maize and potato using Biolog technique. The results indicated that compared with monocropping, the average well color development (AWCD, utilization rate of 31 carbon sources) of rhizosphere microbes of intercropped maize and potato was increased by 17.36%, 7.38% and 3.76%, 32.21% respectively, among the intercropping and monocropping crops, the AWCD value of intercropped potato was the highest and the monocropped maize was the lowest. Functional diversity index of Shannon index (H), Simpson index (D), Evenness index (E) and Richness index (S) were higher in intercropping rhizosphere soil than these in the monocropping systems, but no significant difference. Among six types of carbon sources used by the rhizospheric microbes, carbohydrates, amino acids and carboxylic acids, had higher utilization rates with definite differences. Principal component analysis (PCA) and cluster analysis demonstrated that the amino acids, carbohydrates and carboxylic acids were the sensitive carbon sources for differentiating the changes of the microbial community induced by monocropping and intercropping. This study showed that intercropping can change the composition and enhance functional diversity of the microbial community in the rhizosphere of maize and potato.

Key words: Maize//potato intercropping, Rhizosphere microbial community, Functional diversity

[1] Schloter M, Dilly O, Munch J N. Indicators for evaluating soil quality. Agric Ecosyst Environ, 2003, 8: 255–262

[2] 曹均, 吴姬, 赵小蓉, 李贵桐, 孙明德, 曹庆昌, 林启美. 北京9个典型板栗园土壤碳代谢微生物多样性特征. 生态学报, 2010, 30: 527–532

Cao J, Wu J, Zhao X R, Li G T, Sun M D, Cao Q C, Lin Q M. Carbon catabolic diversity characters of 9 chestnut soils in Beijing. Acta Ecol Sin, 2010, 30: 527–532 (in Chinese with English abstract)

[3] Giller K E, Beare M H, Lavelle P, Giller K E, Beare M H, Lavelle P, Izac A M N, Swift M J. Agricultural intensification, soil biodiversity and agroco system function. Appl Soil Ecol, 1997, 6: 3–16

[4] 杜茜, 卢迪, 马琨. 马铃薯连作对土壤微生物群落结构和功能的影响. 生态环境学报, 2012, 21: 1252–1256

Du Q, Lu D, Ma K. Effect of potato continuous cropping on soil microbial community structure and function. Ecol Environ Sci, 2012, 21: 1252–1256 (in Chinese with English abstract)

[5] 吴凤芝, 王学征, 潘凯. 小麦和大豆茬口对黄瓜土壤微生物生态特征的影响. 应用生态学报, 2008, 19: 794–798

Wu F Z, Wang X Z, Pan K. Effects of wheat and soybean stubbles on soil microbial ecological characteristics in cucumber field. Chin J Appl Ecol, 2008, 19: 794–798 (in Chinese with English abstract)

[6] 胡君利, 林先贵, 尹睿, 褚海燕, 张华勇, 王俊华, 曹志洪. 浙江慈溪旱作农田土壤微生物学性状的时空演变特征. 应用生态学报, 2008, 19: 1977–1982

Hu L J, Lin X G, Yin R, Zhu H Y, Zhang H Y, Wang J H, Cao Z H. Spatiotemporal evolvement of soil microbiological characteristics in upland fields with different utilization duration in Cixi, Zhejiang Province. Chin J Appl Ecol, 2008, 19: 1977–1982 (in Chinese with English abstract)

[7] Li L, Li S M, Sun J H, Zhou L L, Bao X G, Zhang H G, Zhang F S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA, 2007, 104: 11192–11196

[8] Zhu Y Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Mew T W, Teng P S,Wang Z H, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406: 718–722

[9]吴凤芝, 周新刚. 不同作物间作对黄瓜病害及土壤微生物群落多样性的影响. 土壤学报, 2009, 46: 899–906

Wu F Z, Zhou X G. Effect of intercropping of cucumber with different crops on cucumber diseases and soil microbial community diversity. Acta Pedol Sin, 2009, 46: 899–906 (in Chinese with English abstract)

[10]He Y, Ding N, Shi J C, Wu M, Liao H, Xu J M. Profiling of microbial PLFAs: Implication for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils. Soil Biol Biochem, 2013, 57: 625–634

[11]何国艳. 玉米马铃薯间作对土壤微生物多样性的影响. 云南农业大学硕士学位论文, 云南昆明, 2012

He G Y. Effects of Maize and Potato Intercropping on the Amount of Soil Microorganisms. MS Thesis of Yunnan Agricultural University, Kunming, China, 2012 (in Chinese with English abstract)

[12]董艳, 杨智仙, 董坤, 汤利, 郑毅, 胡国斌. 施氮水平对蚕豆枯萎病和根际微生物代谢功能多样性的影响. 应用生态学报, 2013, 24: 1101–1108

Dong Y, Yang Z X, Dong K, Tang L, Zheng Y, Hu G B. Effects of nitrogen application rate on faba bean Fusarium wilt and rhizospheric microbial metabolic functional diversity. Chin J Appl Ecol, 2013, 24: 1101–1108 (in Chinese with English abstract)

[13]Zabinski C A, Gannon J E. Effects of recreational impacts on soil microbial communities. Environ Manage, 1997, 21: 233–238

[14]Weber K P, Grove J A, Gehder M, Anderson W A, Legge R L. Data transformations in the analysis of community-level substrate utilization data from micro plates. J Microbiol Methods, 2007, 69: 461–469

[15]Jussila M M, Jurgens G, Lindstrom K, Suominen L. Genetic diversity of culturable bacteria in oil contaminated rhizosphere of Galega orientalis. Environ Pollut, 2006, 139: 244–257

[16]Choi K H, Dobbs F C. Comparison of two kinds of Biolog micro plates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microbiol Methods, 1999, 36: 203–213

[17]Garland J L. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol, 1997, 24: 289–300

[18]Konopka A, Oliver L, Turco R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecol, 1998, 35: 103–115

[19]Suman A, Lal M, Singh A K, Gaur A. Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agron J, 2006, 98: 698–704

[20]胡举伟, 朱文旭, 张会慧, 许楠, 李鑫, 岳冰冰, 孙广玉. 桑树/大豆间作对植物生长及根际土壤微生物数量和酶活性的影响. 应用生态学报, 2013, 4: 1423–1427

Hu J W, Zhu W X, Zhang H H, Xu N, Li X, Yue B B, Sun G Y. Effects of mulberry/soybean intercropping on the plant growth and rhizosphere soil microbial number and enzyme activities. Chin J Appl Ecol, 2013, 24: 1423–1427 (in Chinese with English abstract)

[21]能凤娇, 吴龙华, 刘鸿雁, 任婧, 刘五星, 骆永明. 芹菜与伴矿景天间作对污泥农用锌镐污染土壤化学与微生物性质的影响. 应用生态学报, 2013, 24: 1428–1434

Xiong F J, Wu L H, Liu H Y, Ren J, Liu W X, Luo Y M. Effects of intercropping Sedum plumbizincicola and Apium graceolens on the soil chemical and microbiological Properties under the contamination of zinc and cadmium from sewage sludge application. Chin J Appl Ecol, 2013, 24: 1428–1434 (in Chinese with English abstract)

[22]李鑫, 张会慧, 岳冰冰, 金微微, 许楠, 朱文旭, 孙广玉. 桑树-大豆间作对盐碱土碳代谢微生物多样性的影响. 应用生态学报, 2012, 23: 1825–1831

Li X, Zhang H H, Yue B B, Jin W W, Xu N, Zhu W X, Sun G Y. Effects of mulberry-soybean intercropping on carbon-metabolic microbial diversity in saline-alkaline soil. Chin J Appl Ecol, 2012, 23: 1825–1831 (in Chinese with English abstract)

[23]田春杰, 陈家宽, 钟扬. 微生物系统发育多样性及其保护生物学意义. 应用生态学报, 2003, 14: 609–612

Tian C J, Chen J K, Zhong Y. Phylogenic diversity of microbes and its perspectives in conservation biology. Chin J Appl Ecol, 2003, 14: 609–612 (in Chinese with English abstract)

[24]董艳, 董坤, 汤利, 郑毅, 杨智仙, 肖靖秀, 赵平, 胡国彬. 小麦蚕豆间作对蚕豆根际微生物群落功能多样性的影响及其与蚕豆枯萎病发生的关系. 生态学报, 2013, 33: 7445–7454

Dong Y, Dong K, Tang L, Zheng Y, Yang Z X, Xiao J X, Zhao P, Hu G B. Relationship between rhizosphere microbial community functional diversity and faba bean Fusarium wilt occurrence in wheat and faba bean intercropping system. Acta Ecol Sin, 2013, 33: 7445–7454 (in Chinese with English abstract)

[25]章家恩, 高爱霞, 徐华勤, 罗明珠. 玉米/花生间作对土壤微生物和土壤养分状况的影响. 应用生态学报, 2009, 20: 1597–1602

Zhang J E, Gao A X, Xu H Q, Luo M Z. Effect of wheat/maize/soybean and wheat/maize/sweet potato relay strip intercropping on bacterial community diversity of rhizosphere soil and nitrogen uptake of crops. Chin J Appl Ecol, 2009, 20: 1597–1602 (in Chinese with English abstract)

[26]郝艳茹, 劳秀荣. 复合群体作物根际营养效应的研究进展. 中国农学通报, 2001, 17: 47–49

Hao Y R, Lao X R. Research advances on rhizospheric nutrition effects of intercropping system. Chin Agric Sci Bull, 2001, 17: 47–49 (in Chinese with English abstract)

[27]马玲, 马琨, 汤梦洁, 代晓华. 间作与接种AMF对连作土壤微生物群落结构与功能的影响. 生态环境学报, 2013, 22: 1341–1347

Ma L, Ma K, Tang M J, Dai X H. Effects of intercropping and inoculation of AMF on the microbial community structure and function of continuous cropping soil. Ecol Environ Sci, 2013, 22: 1341–1347 (in Chinese with English abstract)

[28]Hao W Y, Ren L X, Ran W, Shen Q R. Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum. Plant Soil, 2010, 336: 485–497

[1] 杨宇虹, 陈冬梅, 晋艳, 王海斌, 段玉琪, 郭徐魁, 何海斌, 林文雄. 不同肥料种类对连作烟草根际土壤微生物功能多样性的影响[J]. 作物学报, 2011, 37(01): 105-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!