欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (08): 1295-1303.doi: 10.3724/SP.J.1006.2015.01295

• 研究简报 • 上一篇    

模拟大气温度和CO2浓度升高对双季稻氮素利用的影响

王斌1,2,万运帆1,*,郭晨3,李玉娥1,游松财1,秦晓波1,陈汇林2   

  1. 1 中国农业科学院农业环境与可持续发展研究所 / 农业部农业环境重点实验室,北京100081; 2 海南省气象科学研究所 / 南海气象防灾减灾重点实验室,海南海口 570203; 3 华中农业大学资源与环境学院 / 农业部长江中下游耕地保育重点实验室,湖北武汉 430070
  • 收稿日期:2015-01-04 修回日期:2015-05-04 出版日期:2015-08-12 网络出版日期:2015-06-03
  • 通讯作者: 万运帆, E-mail: wanyunfan@ami.ac.cn, Tel: 010-82109345
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(201103039)和国家重点基础研究发展计划(973计划)项目(2010CB951302)资助。

Effects of Elevated Air Temperature and Carbon Dioxide Concentration on the Nitrogen Use of Double Rice (Oryza sativa L.) in Open-top Chambers

WANG Bin1,2,WAN Yun-Fan1,*,GUO Chen3,LI Yu-E1,YOU Song-Cai1,QIN Xiao-Bo1,CHEN Hui-Lin2   

  1. 1 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences / Key Laboratory for Agro-Environment, Ministry of Agriculture, Beijing 100081, China; 2 Hainan Institute of Meteorological Science / Key Laboratory of South China Sea Meteorology and Disaster Mitigation, Haikou 570203, China; 3 College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Wuhan 430070, China
  • Received:2015-01-04 Revised:2015-05-04 Published:2015-08-12 Published online:2015-06-03
  • Contact: 万运帆, E-mail: wanyunfan@ami.ac.cn, Tel: 010-82109345

摘要:

未来气候主要表现为大气温度和CO2浓度升高的变化趋势,升温2CO2浓度达到450 µL L-1 (同比增加60 µL L-1)情景是哥本哈根共识下的安全阈值。本研究采用自主研制的开顶式气室(open-top chamber, OTC)进行双季稻大田原位模拟试验,以早稻两优287和晚稻湘丰优9号为试验材料,设置了大田(UC)、对照(CK)、增温2(CT)、增CO2 60 µL L-1 (CC)和同时增温2CO2 60 µL L-1 (CTC) 5个处理,研究温度和CO2浓度升高对双季稻产量和氮素利用的影响。结果表明,早稻CT的籽粒产量和氮素积累量均低于CKCCCTCCK提高籽粒产量19.7%2.0%,提高氮素积累量15.7%5.1%;晚稻CTCCCTC籽粒产量和氮素积累量比CK分别提高9.2%14.4%18.8%,及7.3%10.2%15%。茎叶氮素转运率和贡献率早稻CCCTC略低于CK,晚稻CCCTC均高于CK。氮素吸收利用率早稻以CC最高(45.7%),晚稻以CTC最高(48.5%),分别比CK提高了35.5%33.1%。氮素农学利用率与之一致,早稻和晚稻的CCCTC均最高(23.1 kg kg-126.9 kg kg-1),比CK提高了56.3%46.2%。氮素生理利用率早稻和晚稻均以CC最高,相比CK提高了12.7%10.5%,但差异不显著。CKUC之间各项指标差异不大,这表明OTC覆盖对水稻生长造成的影响在可接受误差之内。综上所述,本研究认为温度升高2对早稻产量和氮素利用倾向于不利影响,对晚稻则相反;CO2浓度增加60 µL L-1对早稻和晚稻产量和氮素利用倾向于有利影响;同时增温和增CO2对早稻表现抵消作用,对晚稻表现协同作用。

关键词: 开顶式气室, 温度, CO2浓度, 双季稻, 吸氮量, 氮素利用率

Abstract:

Preventing 2°C of warming and restricting the CO2 level to 450 µL L-1 are the safety threshold for climate change based on the Copenhagen Consensus. It is an important reference for the security of rice yields to study the influence of elevated air temperature and CO2 concentration on the nitrogen use of rice. In this paper, a modified open-top chamber (OTC) device was used to simulate relative 60 µL L-1 CO2 concentration rise (based on CO2 background concentration of 390 µL L-1) and 2°C temperature increase scenario in a double rice field experiment with Liangyou 287 and Xiangfengyou 9 as the early and late rice varieties respectively. There were five treatments with three replications: 1) UC: Paddy field without OTC cover; 2) CK: Check OTC with the similar temperature and CO2 concentration to the field environment; 3) CT: OTC with 2°C temperature increase; 4) CC: OTC with 60 µL L-1 CO2 concentration elevated; 5) CTC: OTC with 2°C temperature increase and 60 µL L-1 CO2 concentration elevated. The nitrogen accumulation, translocation and utilization in different treatments were explored. The results showed significant interactions between temperature increase and CO2 concentration elevated on the yield and nitrogen use. In early rice CC and CTC achieved an increase for grain yield (19.7% and 2.0%) and nitrogen accumulation (15.7% and 5.1%) compared with CK while CT presented a decrease. In late rice warming and high CO2 concentration (CT, CC, and CTC) benefited the grain yield and nitrogen uptake, increasing 9.2%, 14.4%, 18.8% and 7.3%, 10.2%, 15% compared with CK respectively. Nitrogen translocation and contribution efficiency (from stem and leaf to grain) of CC and CTC was lower than that of CK in early rice, and higher than that of CK in late rice. Nitrogen recovery efficiency of CC and CTC reached to 45.7% and 48.5% in early and late rice respectively, achieving the highest increase of 35.3% and 33.1% compared with that of CK. CC and CTC got the highest nitrogen agronomic efficiency by 23.1 kg kg-1 and 26.9 kg kg-1 in early and late rice respectively, and CC got the highest nitrogen physiological efficiency by 50.7 kg kg-1 and 56 kg kg-1 in both early and late rice. There existed no significant difference between CK and UC, which suggested the impact on rice growth under OTC covering was slight. In conclusion, it tends to a negative effect with 2°C temperature increase on yield and nitrogen utilization for early rice, while a positive effect for late rice. A positive effect with 60 µL L-1 CO2 concentration elevated always exists during double rice growth. The condition of 2°C temperature increase and 60 µL L-1 CO2 concentration elevated has an antagonistic effect on early rice, while a synergistic effect on late rice.

Key words: Open-top chamber, Temperature, CO2 concentration, Double rice, Nitrogen accumulation, Nitrogen use efficiency

[1]IPCC. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. UK: Cambridge University Press, 2014. pp 23–89



[2]IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. UK: Cambridge University Press, 2007. pp 80–133



[3]Lin E, Xiong W, Hui J, Xu Y L, Li Y, Bai L P, Xie L Y. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos Trans R Soc London, Ser B, 2005, 360: 2149–2154



[4]Calvin K, Edmonds J, Bond-Lamberty B, Clarke L, Kim S H, Kyle P, Smith S J, Thomson A, Wise M. 2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energy Econ, 2009, 31: S107–S120



[5]熊伟, 居辉, 许吟隆, 林而达. 气候变化对中国农业温度阈值影响研究及其不确定性分析. 地球科学进展, 2006, 21: 70–76



Xiong W, Ju H, Xu Y L, Lin E D. The threshold of temperature increase due to climate change for Chinese agriculture and its uncertainties. Adv Earth Sci, 2006, 21: 70–76 (in Chinese with English abstract)



[6]王铮, 朱潜挺, 吴静. 不确定性下的中国减排方案寻优研究. 中国科学院院刊, 2011, 26: 261–270



Wang Z, Zhu Q T, Wu J. Research on China’s emission reduction scheme for searching superiority with uncertainty of climate change. Bull Chin Acad Sci, 2011, 26: 261–270 (in Chinese with English abstract)



[7]Wreford A, Moran D, Adger N. Climate Change and Agriculture: impacts, adaptation and mitigation. Paris: OECD Publishing, 2010. pp 11–60



[8]Parry M L, Rosenzweig C, Iglesias A, Livermore M, Fischer G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ Change, 2004, 14: 53–67



[9]IRRI. Rice Almanac: Source Book for the Most Important Economic Activity on Earth. UK: CABI Publishing, 2002. pp 1–45



[10]Peng S B, Huang J L, Zhong X H, Huang J L, Zhong X H, Yng J C, Wng G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 1: 776–785



[11]张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣凤. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915–924



Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915–924 (in Chinese with English abstract)



[12]Kimball B A, Kobayashi K, Bindi M. Responses of agricultural crops to free-air CO2 enrichment. Adv Agron, 2002, 77: 293–368



[13]Peng S, Huang J, Sheehy J E, Laza R C, Visperas R M, Zhong X, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971–9975



[14]Baker J T, Allen Jr L H. Contrasting Crop Species Responses to CO2 and Temperature: Rice, Soybean and Citrus. Springer Netherlands, 1993. pp 239–260



[15]Kim H Y, Lieffering M, Miura S, Kobayashi K, Okada M. Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytol, 2001, 150: 223–229



[16]Tashiro T, Wardlaw I F. The effect of high temperature on the accumulation of dry matter, carbon and nitrogen in the kernel of rice. Funct Plant Biol, 1991, 18: 259–265



[17]Kim H Y, Lim S S, Kwak J H, Lee D S, Lee S M, Ro H M, Choi W J. Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant Soil, 2011, 342: 59–71



[18]Nam H S, Kwak J H, Lim S S, Choi W J, Lee S I, Lee D S, Lee K S, Kin H Y, Lee S M, Matsushima M. Fertilizer N uptake of paddy rice in two soils with different fertility under experimental warming with elevated CO2. Plant Soil, 2013, 369: 563–575



[19]Moya T B, Ziska L H, Weldon C, Quilang J, Jones P. Microclimate in open-top chambers: Implications for predicting climate change effects on rice production. Trans ASAE, 1997, 40: 739–747



[20]Sadras V O, Bubner R, Moran M A. A large-scale, open-top system to increase temperature in realistic vineyard conditions. Agric For Meteorol, 2012, 154: 187-194



[21]万运帆, 游松财, 李玉娥, 王斌, 高清竹, 秦晓波, 刘硕. 开顶式气室原位模拟温度和CO2浓度升高在早稻上的应用效果. 农业工程学报, 2014, 30: 123–130



Wan Y F, You S C, Li Y E, Wang B, Gao Q Z, Qin X B, Liu S. Applied effect of improved open-top chamber on simulation in situ of elevating air temperature and CO2 concentration in early rice field. Trans CSAE, 2014, 30: 123–130 (in Chinese with English abstract)



[22]韩宝吉, 石磊, 徐芳森, 黄见良, 曾祥明, 马欣, 郭龙飞. 湖北省水稻施肥现状分析及评价. 湖北农业科学, 2012, 51: 2430–2435



Han B J, Shi L, Xu F S, Huang J L, Zeng X M, Ma X, Guo L F. Evaluation and present situation of fertilization for rice in Hubei Province. Hubei Agric Sci, 2012, 51: 2430–2435 (in Chinese with English abstract)



[23]王伟妮, 鲁剑巍, 陈防, 鲁明星, 李慧, 李小坤. 湖北省水稻施肥效果及肥料利用效率现状研究. 植物营养与肥料学报, 2010, 16: 289–295



Wang W N, Lu J W, Chen F, Lu M X, Li H, Li X K. Study on fertilization effect and fertilizer use efficiency of rice in Hubei Province. Plant Nutr Fert Sci, 2010, 16: 289–295 (in Chinese with English abstract)



[24]孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40: 1639–1649



Sun Y J, Sun Y Y, Xu H, Li Y, Yan F J, Jiang M J, Ma J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2014, 40: 1639–1649 (in Chinese with English abstract)



[25]万素琴, 陈晨, 刘志雄, 周月华, 邓环, 高素华. 气候变化背景下湖北省水稻高温热害时空分布. 中国农业气象, 2009, 30: 316–319



Wan S Q, Chen C, Liu Z X, Zhou Y H, Deng H, Gao S H. Space tome distribution of heat injury on rice in Hubei Province under climate change. Chin J Agrometeorol, 2009, 30: 316-319 (in Chinese with English abstract)



[26]况慧云, 徐立军, 黄英金. 高温热害对水稻的影响及机制的研究现状与进展. 中国水稻科学, 2006, 20: 219–222



Kuang H Y, Xu L J, Huang Y J. Research advances on the impact and mechanisms of heat victims on rice. Chin J Rice Sci, 2006, 20: 219–222 (in Chinese with English abstract)



[27]苏荣瑞, 耿一风, 田皓, 黄永平, 万素琴, 周守华, 张红燕. 江汉平原58年寒露风对双季晚稻的影响. 湖北农业科学, 2012, 51: 5020–5023



Su R R, Geng Y F, Tian H, Huang Y P, Wan S Q, Zhou S H, Zhang H Y. Effect of cold dew wind on double-cropping late rice in recent 58 years in Jianghan Plain. Hubei Agric Sci, 2012, 51: 5020–5023 (in Chinese with English abstract)



[28]Fitter A H, Self G K, Wolfenden J, Van Vuuren M, Brown T, Williamson L, Graves J, Robinson D. Root production and mortality under elevated atmospheric carbon dioxide. Plant Soil, 1995, 187: 299–306



[29]Ziska L H, Manalo P A, Ordonez R A. Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: growth and yield response of 17 cultivars. J Exp Bot, 1996, 47: 1353–1359



[30]Ma L N, Lü X T, Liu Y, Guo J X, Zhang N Y, Yang J Q, Wang R Z. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China. Plos One, 2011, 6: e27645



[31]Sierra J. Nitrogen mineralization and nitrification in a tropical soil: effects of fluctuating temperature conditions. Soil Biol Biochem, 2002, 34: 1219–1226



[32]郑凤英, 彭少麟. 植物生理生态指标对大气CO2浓度倍增响应的整合分析. 植物学报, 2001, 43: 1101–1109



Zheng F Y, Peng S L. Meta-analysis of the response of plant ecophysiological variables to doubled atmospheric CO2 concentrations. Bull Bot, 2001, 43: 1101–1109 (in Chinese with English abstract)



[33]董桂春, 王余龙, 杨洪建, 黄建晔, 朱建国, 杨连新, 单玉华. 开放式空气CO2浓度增高对水稻氮素吸收利用的影响. 应用生态学报, 2002, 13: 1219–1222



Dong G C, Wang Y L, Yang H J, Huang J Y, Zhu J G, Yang L X, Shan Y H. Effect of free-air CO2 enrichment (FACE) on nitrogen accumulation and utilization efficiency in rice (Oryza sativa). Chin J Appl Ecol, 2002, 13: 1219–1222 (in Chinese with English abstract)



[34]陈春梅, 谢祖彬, 朱建国. 大气CO2浓度升高对土壤碳库的影响. 中国生态农业学报, 2008, 16: 217–222



Chen C M, Xie Z B, Zhu J G. Effects of elevated atmospheric CO2 concentration on soil carbon. Chin J Eco-Agric, 2008, 16: 217–222 (in Chinese with English abstract)



[35]谢祖彬, 朱建国, 张雅丽, 马红亮, 刘钢, 韩勇, 曾青, 蔡祖聪. 水稻生长及其体内C, N, P组成对开放式空气CO2浓度增高和N, P施肥的响应. 应用生态学报, 2002, 13: 1223–1230



Xie Z B, Zhu J G, Zhang Y L, Ma H L, Liu G, Han Y, Zeng Q, Cai Z C. Responses of rice (Oryza sativa) growth and its C, N and P composition to FACE (free-air CO2 enrichment) and N, P fertilization. Chin J Appl Ecol, 2002, 13: 1223–1230 (in Chinese with English abstract)

[1] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[2] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[3] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[4] 刘磊, 廖萍, 邵华, 刘劲松, 杨星莲, 王静, 王海媛, 张俊, 曾勇军, 黄山. 施石灰和秸秆还田对双季稻田土壤钾素表观平衡的互作效应[J]. 作物学报, 2022, 48(1): 226-237.
[5] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665.
[6] 田昌, 靳拓, 周旋, 黄思怡, 王英姿, 徐泽, 彭建伟, 荣湘民, 谢桂先. 控释尿素对环洞庭湖区双季稻吸氮特征和产量的影响[J]. 作物学报, 2021, 47(4): 691-700.
[7] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[8] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
[9] 李艳大, 曹中盛, 舒时富, 孙滨峰, 叶春, 黄俊宝, 朱艳, 田永超. 基于作物生长监测诊断仪的双季稻叶干重监测模型[J]. 作物学报, 2021, 47(10): 2028-2035.
[10] 侯慧芝, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡, 张国平, 雷康宁. 全膜微垄沟播对寒旱区春小麦苗期土壤水热环境及光合作用的影响[J]. 作物学报, 2020, 46(9): 1398-1407.
[11] 韩展誉,管弦悦,赵倩,吴春艳,黄福灯,潘刚,程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响[J]. 作物学报, 2020, 46(7): 1087-1098.
[12] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[13] 廖萍,刘磊,何宇轩,唐刚,张俊,曾勇军,吴自明,黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(01): 84-92.
[14] 李艳大,黄俊宝,叶春,舒时富,孙滨峰,陈立才,王康军,曹中盛. 不同氮素水平下双季稻株型与冠层内光截获特征研究[J]. 作物学报, 2019, 45(9): 1375-1385.
[15] 方彦杰,张绪成,于显枫,侯慧芝,王红丽,马一凡. 旱地全膜覆土穴播荞麦田土壤水热及产量效应研究[J]. 作物学报, 2019, 45(7): 1070-1079.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!