欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1333-1342.doi: 10.3724/SP.J.1006.2015.01333

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

两种施肥环境下冬小麦京411及其衍生系产量和生理性状的遗传分析

肖永贵1, 李思敏1, 李法计1, 张宏燕2, 陈新民1, 王德森1, 夏先春1, 何中虎1, 3, *   

  1. 1中国农业科学院作物科学研究所 / 国家小麦改良中心, 北京 100081; 2天津市武清区种子管理站, 天津 301700; 3 CIMMYT中国办事处, 北京 100081
  • 收稿日期:2015-01-12 出版日期:2015-09-12 网络出版日期:2015-09-12
  • 通讯作者: 何中虎, E-mail:zhhecaas@163.com
  • 作者简介:第一作者联系方式: E-mail:xiaoyonggui@caas.cn
  • 基金资助:
    本研究由国家自然科学基金项目(31161140346)和作物生物学国家重点实验室开放课题基金(2014KF02)资助

Genetic Analysis of Yield and Physiological Traits in Elite Parent Jing 411 and Its Derivatives under Two Fertilization Environments

XIAO Yong-Gui1, LI Si-Min1, LI Fa-Ji1, ZHANG Hong-Yan2, CHEN Xin-Min1, WANG De-Sen1, XIA Xian-Chun1, HE Zhong-Hu1, 3, *   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) / National Wheat Improvement Center, Beijing 100081, China; 2 Wuqing Seed Management Station, Tianjin 301700, China; 3 International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing 100081, China
  • Received:2015-01-12 Published:2015-09-12 Published online:2015-09-12

摘要: 明确高产广适性与肥料高效利用相关性状的遗传特性对培育优良新品种具有重要意义。本研究以京411及其衍生后代共15个品种(系)为材料, 在4个正常施肥和1个常年不施肥环境下研究品种(系)的产量构成因素和生理性状, 结合90K SNP芯片, 解析骨干亲本携带的产量和生理性状等位基因信息, 探讨优异基因对高产品种的贡献。结果表明, 正常施肥环境下, 京411衍生后代的产量和收获指数均随世代增加呈逐渐上升趋势, 其中收获指数增加较为显著(P < 0.05)。冠层温度对籽粒产量有重要贡献(P < 0.05), 而叶面积指数和光合速率对收获指数有显著贡献(P < 0.05)。两种施肥条件下中麦175具有较高且稳定的产量和生物学产量, 主要与其较高的肥料吸收效率有关。控制产量和生理性状的遗传区段主要分布在A和B基因组上, 2B、3A和5A染色体分别携带控制穗粒数、叶面积指数和光合速率的位点。京411携带31个对产量和生理性状为正向效应的等位基因, 衍生品种CA0958和中麦175携带的正向效应区段最多, 分别占正向效应位点总数的53.85%和51.35%。中麦175的高产潜力和广适应性可能与其携带较多有利等位基因有关。

关键词: 普通小麦, 衍生品种, 肥料利用效率, 生理性状, SNP标记

Abstract: Understanding the genetics of the traits related to yield potential, stability and high fertilizer-use efficiency is important for breeding new varieties. The elite parent Jing 411 has been widely used in wheat breeding programs in Northern Winter Wheat Region. In this study, Jing 411 and its 14 derivatives were sown in normal fertilized and no-fertilized environments to assess the changes in yield stability and fertilizer-use efficiency. Grain yield and harvest index increased following the generation advance, particularly harvest index increased significantly (P < 0.05). Zhongmai 175 showed high and stable grain yield and above ground biomass under two fertilized environments, mainly due to its high fertilizer-uptake efficiency. Canopy temperature was significantly associated with grain yield (P < 0.05), and leaf area index, and photosynthetic rate were significantly correlated with harvest index (P < 0.05). Several important loci associated with yield and physiological traits were found in A and B genomes. Three new loci for grains per spike, leaf area index, and photosynthetic rate were detected on chromosomes 2B, 3A, and 5A, respectively. Furthermore, 31 positive genetic loci for yield and physiological traits were detected in elite parent Jing 411, and two derivatives, CA0958 and Zhongmai 175, had the most positive loci than others, accounting for 53.85% and 51.35%, respectively. Zhongmai 175 had higher yield potential and stability under different fertilizer environments, possibly due to the presence of positive loci for yield and physiological traits.

Key words: Common wheat, Derivative genotypes, Fertilizer-use efficiency, Physiological traits, SNP markers

[1] Chloupek O, Hrstkova P, Schweigert P. Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. Field Crops Res , 2004, 85: 167-190
[2] Gaju O, Allard V, Martre P, Snape J W, Heumez E, LeGouis J, Moreau D, Bogard M, Griffiths S, Orford S, Hubbart S, Foulkes M J. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res , 2011, 123: 139-152
[3] Foulkes M J, Sylvester-Bradley R, Scott R K. Evidence for differences between winter wheat cultivars in acquisition of soil mineral nitrogen and uptake and utilization of applied fertilizer nitrogen. J Agric Sci (Camb), 1998, 130: 29-44
[4] Barraclough P B, Lopez-Bellido R, Hawkesford M J. Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat. Field Crops Res , 2014, 156: 242-248
[5] Ortiz-Monasterio R J I, Sayre K D, Rajaram S, McMahom M. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci , 1997, 37: 898-904
[6] Muurinen S, Slafer G A, Peltonen-Sainio P. Breeding effects on nitrogen use efficiency of spring cereals under northern conditions. Crop Sci , 2006, 46: 561-568
[7] Pushpendra K G, Harindra S B, Pawan L K, Neeraj K, Ajay K, Reyazul R M, Amita M, Jitendra K. QTL analysis for some quantitative traits in bread wheat. J Zhejiang Univ Sci B , 2007, 8: 807-814
[8] Kuchel H, Williams K J, Langridge P, Eagles H A, Jefferies S P. Genetic dissection of grain yield in bread wheat: I. QTL analysis. Theor Appl Genet , 2007, 115: 1029-1041
[9] Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T. Detection of two major grain yield QTL in bread wheat ( Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet , 2012, 125: 1473-1485
[10] Maphosa L, Langridge P, Taylor H, Parent B, Emebiri L C, Kuchel H, Reynolds M P, Chalmers K J, Okada A, Edwards J, Mather D E. Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. Theor Appl Genet , 2014, 127: 1607-1624
[11] Reynolds M P, Trethowan R, Crossa J, Vargas M, Sayre K D. Physiological factors associated with genotype by environment interaction in wheat. Field Crops Res , 2002, 75: 139-160
[12] Maccaferri M, Sanguineti M C, Corneti S, Ortega J L A, Salem M B, Bort J, DeAmbrogio E, del Moral L F G, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R. Quantitative trait loci for grain yield and adaptation of durum wheat ( Triticum durum Desf.) across a wide range of water availability. Genetics , 2008, 178: 489-511
[13] 陈新民, 何中虎, 王德森, 庄巧生, 张运宏, 张艳, 张勇, 夏先春. 利用京411为骨干亲本培育高产小麦新品种. 作物杂志, 2009, (4): 1-5 Chen X M, He Z H, Wang D S, Zhuang Q S, Zhang Y H, Zhang Y, Zhang Y, Xia X C. Developing high yielding wheat varieties from core parent &#x0201c;Jing 411&#x0201d;. Crops , 2009, (4): 1-5 (in Chinese with English abstract)
[14] 肖永贵, 路亚明, 闻伟锷, 陈新民, 夏先春, 王德森, 李思敏, 童依平, 何中虎. 小麦骨干亲本京411及衍生品种苗期根部性状的遗传. 中国农业科学, 2014, 47: 2916-2926 Xiao Y G, Lu Y M, Wen W E, Chen X M, Xia X C, Wang D S, Li S M, Tong Y P, He Z H. Genetic contribution of seedling root traits among elite wheat parent Jing 411 to its derivatives. Sci Agric Sin , 2014, 47: 2916-2926 (in Chinese with English abstract)
[15] Reynolds M P, Nagarajan S, Razzaque M A, Ageeb O A A. Heat tolerance. In: Reynolds M P, Ortiz-Monasterio J I, McNab A, eds. Application of Physiology in Wheat Breeding. Mexico: CIMMYT Press, 2001. pp 124-135
[16] Allen A M, Barker G L, Berry S T, Coghill J A, Gwilliam R, Kirby S, Robinson P, Brenchley R C, D&#x02019;Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards K J. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat ( Triticum aestivum L.). Plant Biotechnol J , 2011, 9: 1086-1099
[17] Brucker P L, Frohberg R C. Stress tolerance and adaptation in spring wheat. Crop Sci , 1987, 27: 31-36
[18] 李法计, 肖永贵, 金松灿, 夏先春, 陈新民, 汪洪, 何中虎. 京411衍生系苗期氮和磷利用效率相关性状的遗传解析. 麦类作物学报, 2015, 35: 737-749 Li F, Xiao Y G, Jin S C, Xia X C, Chen X M, Wang H, He Z H. Genetic analysis of nitrogen and phosphorus utilization efficiency related traits at seeding stage of Jing 411 and its derivatives. J Tritical Crops , 2015, 35: 737-749 (in Chinese with English abstract)
[19] Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S. RFLP mapping of the three major genes, Vrn1 , Q and B1 , on the long arm of chromosome 5A of wheat. Euphytica , 1998, 101: 91-95
[20] Vitulo N, Albiero A, Forcato C, Campagna D, Pero F D, Bagnaresi P, Colaiacovo M, Faccioli P, Lamontanara A, &#x00160;imkov&#x000e1; H, Kubal&#x000e1;kov&#x000e1; M, Perrotta G, Facella P, Lopez L, Pietrella M, Gianese G, Dole&#x0017e;el J, Giuliano G, Cattivelli L, Valle G, Stanca A M. First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One , 2011, 6: e26421
[21] Graziani M, Maccaferri M, Royo C, Salvatorelli F, Tuberosa R. QTL dissection of yield components and morpho-physiological traits in a durum wheat elite population tested in contrasting thermo- pluviometric conditions. Crop &#x00026; Past Sci , 2014, 65: 80-95
[22] Li X M, Chen X M, Xiao Y G, Xia X C, Wang D S, He Z H, Wang H J. Identification of QTLs for seedling vigor in winter wheat. Euphytica , 2014, 198: 199-209
[23] Vijayalakshmi K, Fritz A K, Paulsen G M, Bai G, Pandravada S, Gill B S. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed , 2010, 26: 163-175
[24] Maccaferri M, Sanguineti M C, Demontis A, El-Ahmed A, del Moral L G, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R. Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot , 2011, 62: 409-438
[25] 韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本&#x0201c;胜利麦/燕大1817&#x0201d;杂交组合后代衍生品种遗传构成解析. 作物学报, 2009, 35: 1395-1404 Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y. Molecular dissection of core parental cross &#x0201c;Triumph/Yanda 1817&#x0201d; and its derivatives in wheat breeding program. Acta Agron Sin , 2009, 35: 1395-1404 (in Chinese with English abstract)
[26] 肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本&#x0201c;周8425B&#x0201d;及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44: 3919-3929 Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H. Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin , 2011, 44: 3919-3929 (in Chinese with English abstract)
[1] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[2] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[3] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[4] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[5] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[6] 孙程明,陈锋,陈松,彭琦,张维,易斌,张洁夫,傅廷栋. 甘蓝型油菜每角粒数的全基因组关联分析[J]. 作物学报, 2020, 46(01): 147-153.
[7] 孙程明,陈松,彭琦,张维,易斌,张洁夫,傅廷栋. 甘蓝型油菜角果长度性状的全基因组关联分析[J]. 作物学报, 2019, 45(9): 1303-1310.
[8] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[9] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[10] 白彦明,李龙,王绘艳,柳玉平,王景一,毛新国,昌小平,孙黛珍,景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析[J]. 作物学报, 2019, 45(10): 1468-1477.
[11] 周萍萍,颜红海,彭远英. 基于高通量GBS-SNP标记的栽培燕麦六倍体起源研究[J]. 作物学报, 2019, 45(10): 1604-1612.
[12] 许阳东,朱宽宇,章星传,王志琴,杨建昌. 绿色超级稻品种的农艺与生理性状分析[J]. 作物学报, 2019, 45(1): 70-80.
[13] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[14] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[15] 剧成欣, 周著彪, 赵步洪, 王志琴, 杨建昌. 不同氮敏感性粳稻品种的氮代谢与光合特性比较[J]. 作物学报, 2018, 44(03): 405-413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!