作物学报 ›› 2020, Vol. 46 ›› Issue (01): 147-153.doi: 10.3724/SP.J.1006.2020.94060
• 研究简报 • 上一篇
孙程明1,2,陈锋1,陈松1,彭琦1,张维1,易斌2,*(),张洁夫1,*(),傅廷栋2
SUN Cheng-Ming1,2,CHEN Feng1,CHEN Song1,PENG Qi1,ZHANG Wei1,YI Bin2,*(),ZHANG Jie-Fu1,*(),FU Ting-Dong2
摘要:
每角粒数是油菜重要的产量构成因子, 增加每角粒数有助于提高油菜的籽粒产量。利用Illumina 60K SNP芯片对496份具有代表性的油菜资源进行基因型分析, 考察该群体在2个环境中的每角粒数, 利用MLM和GLM模型进行全基因组关联分析。结果表明, 本群体在2个环境中每角粒数的广义遗传力为57.7%。利用MLM和GLM模型分别检测到9个和20个位点, 所有MLM位点均得到GLM结果的验证。6个位点与前人定位的QTL重叠, 其中2个位点得到2次验证, 其余14个是新位点。在7个位点附近找到了候选基因, 其中在C09染色体的位点Bn-scaff_15576_1-p74980附近找到已克隆的油菜每角粒数基因BnaC9.SMG7b, 在其余6个位点附近找到GRDP1、SPATULA、HVA22D、DA2等已知的拟南芥每角粒数基因的同源基因。本研究结果有助于解析油菜每角粒数的遗传基础及其调控机制, 为每角粒数的遗传改良奠定了基础。
[1] | 王汉中 . 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302. |
Wang H Z . Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract). | |
[2] | 李永鹏, 程焱, 蔡光勤, 范楚川, 周永明 . 油菜每角果粒数差异的细胞学基础和分子机理. 中国科学: 生命科学, 2014,44:822-831. |
Li Y P, Cheng Y, Cai G Q, Fan C C, Zhou Y M . Cytological basis and molecular mechanism of variation in number of seeds per pod in Brassica napus. Sci Sin Vitae, 2014,44:822-831 (in Chinese with English abstract). | |
[3] |
Yang Y, Wang Y, Zhan J, Shi J, Wang X, Liu G, Wang H . Genetic and cytological analyses of the natural variation of seed number per pod in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:1890. doi: 10.3389/fpls.2017.01890.
doi: 10.3389/fpls.2017.01890 pmid: 29163611 |
[4] |
Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J . Unraveling the complex trait of crop yield with quantitative trait loci mapping inBrassica napus. Genetics, 2009,182:851-861.
doi: 10.1534/genetics.109.101642 pmid: 19414564 |
[5] |
Luo Z, Wang M, Long Y, Huang Y, Shi L, Zhang C, Liu X, Fitt B D, Xiang J, Mason A S . Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet, 2017,130:1569-1585.
doi: 10.1007/s00122-017-2911-7 pmid: 28455767 |
[6] | 漆丽萍 . 甘蓝型油菜株型与角果相关性状的QTL分析. 华中农业大学博士学位论文, 湖北武汉, 2014. |
Qi L P . QTL Analysis for the Traits Associated with Plant Architecture and Silique in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2014 (in Chinese with English abstract). | |
[7] |
Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y . Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6:21625. doi: 10.1038/srep 21625.
doi: 10.1038/srep21625 pmid: 26880301 |
[8] |
Yang Y, Shi J, Wang X, Liu G, Wang H . Genetic architecture and mechanism of seed number per pod in rapeseed: elucidated through linkage and near-isogenic line analysis. Sci Rep, 2016,6:24124. doi: 10.1038/srep24124.
doi: 10.1038/srep24124 pmid: 27067010 |
[9] |
Sun C, Wang B, Yan L, Hu K, Liu S, Zhou Y, Guan C, Zhang Z, Li J, Zhang J, Chen S, Wen J, Ma C, Tu J, Shen J, Fu T, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:1102. doi: 10.3389/fpls.2016.01102.
doi: 10.3389/fpls.2016.01102 pmid: 27512396 |
[10] |
Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H . Whole-genome resequencing revealsBrassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154. doi: 10.1038/s41467-019-09134-9.
doi: 10.1038/s41467-019-09134-9 pmid: 30858362 |
[11] |
Chen L, Wan H, Qian J, Guo J, Sun C, Wen J, Yi B, Ma C, Tu J, Song L . Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed (Brassica napus L.). Front Plant Sci, 2018,9:375. doi: 10.3389/fpls.2018.00375.
doi: 10.3389/fpls.2018.00375 pmid: 29725340 |
[12] |
Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J . Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res, 2015,23:43-52.
doi: 10.1093/dnares/dsv035 pmid: 26659471 |
[13] | Merk H L, Yarnes S C, Van Deynze A, Tong N, Menda N, Mueller L A, Mutschler M A, Loewen S A, Myers J R, Francis D M . Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. J Am Soc Hortic Sci, 2012,137:427-437. |
[14] |
Ihaka R, Gentleman R . R: a language for data analysis and graphics. J Comput Graph Stat, 1996,5:299-314.
doi: 10.1002/rcm.8315 pmid: 30366355 |
[15] |
Evanno G, Regnaut S, Goudet J . Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005,14:2611-2620.
doi: 10.1111/j.1365-294X.2005.02553.x pmid: 15969739 |
[16] |
Hardy O J, Vekemans X . SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002,2:618-620.
doi: 10.1016/j.yebeh.2019.106687 pmid: 31816478 |
[17] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S . TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[18] | Turner S D . qqman: an R package for visualizing GWAS results using QQ and manhattan plots. BioRxiv, 2014, 1: 005165. doi: http://dx.doi.org/10.1101/005165. |
[19] |
Li S, Chen L, Zhang L, Li X, Liu Y, Wu Z, Dong F, Wan L, Liu K, Hong D . BnaC9. SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes. Plant Physiol, 2015,169:2744-2760.
doi: 10.1104/pp.15.01040 pmid: 26494121 |
[20] |
Rodríguez-Hernández A A, Muro-Medina C V, Ramírez-Alonso J I, Jiménez-Bremont J F . Modification of AtGRDP1 gene expression affects silique and seed development inArabidopsis thaliana. Biochem Biophys Res Common, 2017,486:252-256.
doi: 10.1016/j.bbrc.2017.03.015 pmid: 28285133 |
[21] |
Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan M W, Gao F, Li Y . The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell, 2013,25:3347-3359.
doi: 10.1105/tpc.113.115063 |
[22] |
Braud C, Zheng W, Xiao W . LONO1 encoding a nucleoporin is required for embryogenesis and seed viability in Arabidopsis. Plant Physiol, 2012,160:823-836.
doi: 10.1104/pp.112.202192 pmid: 22898497 |
[23] |
Groszmann M, Paicu T, Smyth D R . Functional domains of SPATULA, a bHLH transcription factor involved in carpel and fruit development in Arabidopsis. Plant J, 2008,55:40-52.
doi: 10.1111/j.1365-313X.2008.03469.x pmid: 18315540 |
[24] |
Chen N N, Chen H R, Yeh S Y, Vittore G, Ho H D . Autophagy is enhanced and floral development is impaired in AtHVA22d RNA interference Arabidopsis. Plant Physiol, 2009,149:1679-1689.
doi: 10.1104/pp.108.131490 pmid: 19151132 |
[25] |
Leroy O, Hennig L, Breuninger H, Laux T, Köhler C . Polycomb group proteins function in the female gametophyte to determine seed development in plants. Development, 2007,134:3639-3648.
doi: 10.1242/dev.009027 pmid: 17855429 |
[26] |
Yang Y, Zhu K, Li H, Han S, Meng Q, Khan S U, Fan C, Xie K, Zhou Y . Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J, 2018,16:1322-1335.
doi: 10.1111/pbi.12872 pmid: 29250878 |
[27] |
Shah S, Karunarathna N L, Jung C, Emrani N . An APETALA1 ortholog affects plant architecture and seed yield component in oilseed rape (Brassica napus L.). BMC Plant Biol, 2018,18:380. doi: 10.1186/s12870-018-1606-9.
doi: 10.1186/s12870-018-1606-9 pmid: 30594150 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[7] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[8] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[9] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[10] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[11] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[12] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[13] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[14] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[15] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
|