欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (02): 243-254.doi: 10.3724/SP.J.1006.2016.00243

• 耕作栽培·生理生化 • 上一篇    下一篇

地黄连作胁迫响应机制的块根蛋白质组学分析

吴林坤1,2,陈军1,2,吴红淼1,2,王娟英1,2,秦贤金1,2,张重义2,林文雄1,2,*   

  1. 1 福建农林大学生命科学学院, 福建福州 350002; 2福建省农业生态过程与安全监控重点实验室, 福建福州 350002
  • 收稿日期:2015-05-27 修回日期:2015-11-20 出版日期:2016-02-12 网络出版日期:2015-12-07
  • 通讯作者: 林文雄, E-mail: lwx@fafu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(81303170),国家自然基金联合基金项目(U1205021)和福建农林大学优秀博士学位论文基金(324-1122yb005) 资助。

Comparative Proteomics Analysis of R. glutinosa Tuber Root in Response to Consecutive Monoculture

WU Lin-Kun1,2,CHEN Jun1,2,WU Hong-Miao1,2,WANG Juan-Ying1,2,QIN Xian-Jin1,2,ZHANG Zhong-Yi2,LIN Wen-Xiong1,2,*   

  1. 1 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring / Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2015-05-27 Revised:2015-11-20 Published:2016-02-12 Published online:2015-12-07
  • Contact: 林文雄, E-mail: lwx@fafu.edu.cn
  • Supported by:

    This study was supported by the National Science Foundation of China (81303170, U1205021) and the Scientific Research Foundation of Graduate School of Fujian Agriculture and Forestry University (324-1122yb005).

摘要:

地黄种植过程中存在严重的连作障碍问题,连作导致块根无法正常膨大、产量品质下降、土传病害严重等。本研究以正、重茬地黄块根为试验材料,通过差异蛋白质组学技术分析连作下地黄块根蛋白质表达谱变化,并进一步采用qRT-PCR技术对锁定的差异蛋白质表达量变化进行验证分析。研究结果发现,连作导致与块根重要生理代谢过程和主要成分合成相关的蛋白质都下调表达,与蛋白质折叠相关的伴侣素(chaperonin)在重茬地黄块根中全部下调表达;连作下与胁迫响应、抵御相关的蛋白质(如pathogenesis-related protein 10, cytochrome P450, Type IIIa membrane protein cp-wap13等)均上调表达。qRT-PCR定量分析证实重茬地黄块根中PR-10基因表达量显著高于正茬地黄;PR-10基因在尖孢镰刀菌病原菌侵染下能够明显被诱导表达,表达量随着侵染时间的增加而逐渐升高,验证了差异蛋白质组学分析的结果。可见连作胁迫对地黄块根蛋白质表达谱有显著影响,导致蛋白质表达紊乱,连作植株生理代谢过程异常,碳水化合物和能量代谢缓慢,产生连作障碍效应。

关键词: 地黄, 连作障碍, 差异蛋白质组学, 病程相关蛋白, 胁迫响应

Abstract:

Rehmannia glutinosa L. is widely applied in Chinese medicine. However, consecutive monocropping of this plant results in serious decline in both biomass and quality of underground tubers, with poor field performance and insufficient resistance to disease and pest. In the present study, the tuber roots from the newly planted (NP) and consecutively monocropped (SM) R. glutinosa were used through comparative proteomics analysis to study the response of R. glutinosa to consecutive monocropping and the underlying mechanisms of replanting disease. Comparative proteomics analysis showed that these proteins involved in important physiological processes and biosynthese of main components in tuber roots were significantly down-regulated under consecutive monocropping regime.It was also found that chaperonins related to protein folding was down-expressed with the extended monocropping. However, these proteins related to stress response/defense such as pathogenesis-related protein 10, cytochrome P450 and Type IIIa membrane protein cp-wap13 were up-regulated in consecutively monocropped R. glutinosa. Quantitative analysis by qRT-PCR confirmed the up-regulation of PR-10 responding to consecutive monocropping or the infection of pathogenic Fusarium oxysporum. Moreover, PR-10 was gradually up-regulated with the increasing days of infection. In conclusion, consecutive monocropping of R. glutinosa greatly affects the expression profile of proteome in tuber roots. These abnormally expressed proteins might lead to the metabolic disturbances and low energy production. Moreover, the limited energy is applied to resist the external environmental stresses, resulting in significant decline in the growth of tuber roots and the accumulation of active ingredients.

Key words: Rehmannia glutinosa, Consecutive monocropping problem, Comparative proteomics, Pathogenesis-related protein, Stress response

[1]张重义, 林文雄. 药用植物的化感自毒作用与连作障碍. 中国生态农业学报, 2009, 17: 189–196



Zhang Z Y, Lin W X. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Chin J Eco–Agric, 2009, 17: 189–196 (in Chinese with English abstract)



[2]吴林坤, 黄伟民, 王娟英, 吴红淼, 陈军, 秦贤金, 张重义, 林文雄. 不同连作年限野生地黄根际土壤微生物群落多样性分析. 作物学报, 2015, 41: 308–317



Wu L K, Huang W M, Wang J Y, Wu H M, Chen J, Qin X J, Zhang Z Y, Lin W X. Diversity analysis of rhizosphere microflora of wild R. glutinosa grown in monocropping for different years. Acta Agron Sin, 2015, 41: 308–317 (in Chinese with English abstract)



[3]Kaur H, Kaur R, Kaur S, Baldwin I T, Inderjit. Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites. PLoS ONE, 2009: e4700



[4]王建花, 陈 婷, 林文雄. 植物化感作用类型及其在农业中的应用. 中国生态农业学报, 2013, 21: 1173–1183



Wang J H, Chen T, Lin W X. Plant allelopathy types and their application in agriculture Chinese. Chin J Eco-Agric, 2013, 21: 1173–1183 (in Chinese with English abstract)



[5]李振方, 杨燕秋, 吴林坤, 舒阳, 赵永坡, 黄伟明, 张重义, 林文雄. 地黄强致病型病原菌的分离及其专化型鉴定. 中国生态农业学报, 2013, 21: 1426−1433



Li Z F, Yang Y Q, Wu L K, Shu Y, Zhao Y P, Huang W M, Zhang Z Y, Lin W X. Isolation of highly pathogenic pathogens and identification of formae speciales of Rehmannia glutinosa L. Chin J Eco-Agric, 2013, 21: 1426−1433 (in Chinese with English abstract)



[6]Li M J, Yang Y H, Chen X J, Wang F Q, Lin W X, Yi Y J, Zeng L, Yang S Y, Zhang Z Y. Transcriptome/degradome–wide identification of R. glutinosa miRNAs and their targets: the role of miRNA activity in the replanting disease. PLoS ONE, 2013, 8: e68531



[7]吴林坤, 王海斌, 尤垂淮, 张志兴, 牛苗苗, 张重义, 林文雄. 地黄块根总蛋白质提取及双向电泳条件优化.中国中药杂志, 2011, 36(8): 5–8



Wu L K, Wang H B, You C H, Zhang Z X, Niu M M, Zhang Z Y, Lin W X. Establishment of extraction method and 2–dimensional electrophoresis conditions for root tuber proteome analysis of Rehmannia glutinosa. China J Chin Mater Med, 2011, 36(8): 5–8 (in Chinese with English abstract)



[8]李奇松, 陈军, 林世圣, 李忠, 张志兴, 林文雄. 水稻籽粒蛋白双向电泳条件的优化及其蛋白组学方法的比较. 作物学报, 2012, 38: 921–927



Li Q S, Chen J, Lin S S, Li Z, Zhang Z X, Lin W X. Optimization of two–dimensional electrophoresis condition for rice grain protein and comparison of relevant proteomic methods. Acta Agron Sin, 2012, 38: 921–927 (in Chinese with English abstract)



[9]Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J. WEGO: a web tool for plotting GO annotations. Nucl Acids Res, 2006, 34: 293–297



[10]范华敏, 李明杰, 郑红艳, 杨艳会, 古力, 王丰青, 陈新建, 张重义. 地黄中响应连作基因的时空表达与分析. 中国中药杂志, 2012, 37: 3029–3035



Fan H M, Li M J, Zheng H Y, Yang Y H, Gu L, Wang F Q, Chen X J, Zhang Z Y. Spatiotemporal expression and analysis of responding consecutive monoculture genes in Rehmannia glutinosa. China J Chin Mater Med, 2012, 37: 3029–3035 (in Chinese with English abstract)



[11]Zhang R X, Li M X, Jia Z P. Rehmannia glutinosa: review of botany, chemistry and pharmacology. J Ethnopharmacol, 2008, 117(2): 199–214



[12]赵晋锋, 余爱丽, 朱晶莹, 王高鸿, 赵根友. 玉米S–腺苷甲硫氨酸合成酶基因(SAMS)逆境胁迫下的表达分析. 河北农业大学学报, 2010, 33(5): 13–17



Zhao J F , Yu A L, Zhu J Y, Wang G H, Zhao G Y. Expressional analysis of SAMS gene from Zea mays under abiotic stresses. J Agric Univ Hebei, 2010, 33(5): 13–17 (in Chinese with English abstract)



[13]刘宛, 李培军, 周启星, 许华夏, 孙铁珩, 张春桂. 植物细胞色素P450酶系的研究进展及其与外来物质的关系. 环境污染治理技术与设备, 2001, 2(5): 1–9



Liu W, Li P J, Zhou Q X, Xu H X, Sun T H, Zhang C G. The research progress of plant cytochrome P450 enzymes and their relationship with xenobiotics.  Tech Eq Environ Pollut Control, 2001, 2(5): 1–9 (in Chinese with English abstract)



[14]Li X, Zhang J B, Song B, Li H P, Xu H Q, Qu B, Dang F J, Liao Y C. Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome p450 gene. Phytopathology, 2010, 100: 183–191



[15]Mao C, Yi K, Yang L, Zheng B, Wu Y, Liu F, Wu P. Identification of aluminium–regulated genes by cDNA–AFLP in rice (Oryza sativa L.): aluminium–regulated genes for the metabolism of cell wall components. J Exp Bot, 2004, 55: 137–143



[16]Pogorelko G, Lionetti V, Fursova O, Sundaram R M, Qi M, Whitham S A, Bogdanove A J, Bellincampi D, Zabotina O A. Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens. Plant Physiol, 2013, 162: 9–23



[17]Shoresh M, Harman GE. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol, 2008, 147: 2147–2163



[18]Sels J, Mathys J, De Coninck B M, Cammue B P, De Bolle M F. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem, 2008, 46: 941–950



[19]刘利华, 林奇英, 谢华安, 谢联辉. 病程相关蛋白与植物抗病性研究. 福建农业学报, 1999, 14(3): 53–58



Liu L H, Lin Q Y, Xie H A, Xie L H, Pathogenesis–related proteins and plant disease resistance. Fujian J Agric Sci,1999,14(3): 53–58 (in Chinese with English abstract)



[20]Liu J J, Ekramoddoullah A K M. The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant P, 2006, 68: 3–13



[21]Koistinen K M, Soininen P, Venalainen T A, Hayrinen J, Laatikainen R, Perakyla M, Tervahauta A I, Karenlampi S O. Birch PR-10c interacts with several biologically important ligands. Phytochemistry, 2005, 66: 2524–2533

[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[3] 李阳阳,荆蓉蓉,吕蓉蓉,石鹏程,李欣,王芹,吴丹,周清元,李加纳,唐章林. 甘蓝型油菜湿害胁迫响应性状的全基因组关联分析及候选基因预测[J]. 作物学报, 2019, 45(12): 1806-1821.
[4] 马立功,张匀华,孟庆林,石凤梅,刘佳,李易初,王志英. 向日葵病程相关蛋白HaPR1基因的克隆与功能研究[J]. 作物学报, 2015, 41(12): 1819-1827.
[5] 吴林坤,黄伟民,王娟英,吴红淼,陈军,秦贤金,张重义,林文雄. 不同连作年限野生地黄根际土壤微生物群落多样性分析[J]. 作物学报, 2015, 41(02): 308-317.
[6] 李先恩,孙鹏,祁建军,周丽莉,王绍华. 地黄栽培种与野生种内源激素含量的差异[J]. 作物学报, 2013, 39(07): 1276-1283.
[7] 曾令杰,林茂兹,李振方,戴林泉,李吉,李晶晶,张重义,林文雄. 连作对太子参光合及药用品质的影响[J]. 作物学报, 2012, 38(08): 1522-1528.
[8] 杨宇虹, 陈冬梅, 晋艳, 王海斌, 段玉琪, 郭徐魁, 何海斌, 林文雄. 不同肥料种类对连作烟草根际土壤微生物功能多样性的影响[J]. 作物学报, 2011, 37(01): 105-111.
[9] 薛建平;葛德燕;张爱民;柳俊;朱艳芳. 试管地黄的不定根膨大过程中4种内源激素的消长[J]. 作物学报, 2004, 30(10): 1056-1059.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!