欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (04): 574-582.doi: 10.3724/SP.J.1006.2016.00574

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻光氧化突变体812HS的光合和抗氧化特性

徐金刚1,吕川根2,*,刘莉1,吕春芳1,马静1,夏士健2,陈国祥1,高志萍1,*   

  1. 1 南京师范大学生命科学学院, 江苏南京210023;2 江苏省农业科学院粮食作物研究所, 江苏南京210014
  • 收稿日期:2015-08-21 修回日期:2016-01-11 出版日期:2016-04-12 网络出版日期:2016-01-27
  • 通讯作者: 吕川根, E-mail: lvchuangen@sina.com; 高志萍, E-mail: 08295@njnu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金(31271621), 江苏省普通高校自然科学研究计划(14KJB180011), 江苏高校优势学科建设工程(PAPD), 江苏省自然科学基金(BK20140916)和江苏省现代作物生产协同创新中心共同资助。

Characteristics of Photosynthesis and Antioxidation in Rice Photo-oxidation Mutant 812HS

XU Jin-Gang1,LÜ Chuan-Gen2,*,LIU Li1,LÜ Chun-Fang1,MA Jing1,XIA Shi-Jian2,CHEN Guo-Xiang1,GAO Zhi-Ping1,*   

  1. 1 College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; 2 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2015-08-21 Revised:2016-01-11 Published:2016-04-12 Published online:2016-01-27
  • Contact: 吕川根, E-mail: lvchuangen@sina.com; 高志萍, E-mail: 08295@njnu.edu.cn
  • Supported by:

    The study was supported by the National Natural Science Foundation of China (31271621), Natural Science Research of Jiangsu Higher Education Institutions (14KJB180011), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Natural Science Foundation of Jiangsu Province (BK20140916), and Jiangsu Collaborative Innovation Center for Modern Crop Production.

摘要:

本研究旨在通过梅雨前后自然光强明显变化的情况下对水稻叶片光氧化突变体812HS与野生型812S的PSII光化学活性、抗氧化酶活性等生理特性的比较研究,探讨812HS易受光氧化损伤现象的光合生理原因。结果表明,大田自然光照出现强光照前,812HS与812S的叶绿素含量、PSII活性、光合磷酸化活性、净光合速率、抗氧化酶活性和活性氧含量均无显著差异。自然强光照开始(梅雨结束)一段时间后,两种水稻的上述各项指标都发生了明显的变化。突变体812HS的叶绿素含量、PSII活性、非循环式光合磷酸化活性和净光合速率均较812S明显降低。高光强下812HS叶片中抗氧化酶CAT和POD活性的上升幅度则小于812S,从而使其体内富集了更多的O2?、H2O2和MDA。光氧化突变体812HS对高光照强度较敏感的PSII活性和较低的CAT、POD活性可能是其发生叶片光氧化现象的生理成因。

关键词: 光氧化, 光化学活性, 抗氧化酶活性

Abstract:

To reveal the physiological mechanism of leaf photo-oxidation in a rice mutant 812HS, we compared and analyzed differences of photochemical activity, antioxidative enzyme activities between 812HS and its wild type 812S grown in the field.  Results showed that chlorophyll content, PSII activity, photophosphorylation activity, net photosynthetic rate (Pn) and antioxidative enzymes activities as well as active oxygen contents in 812HS were similar to those in 812S before exposed to high intensity of sunlight. However, all above indexes were affected by a period of high intensity of sunlight. The decreased degree of chlorophyll content, PSII activity, non-cyclic photophosphorylation (NCPS) activity and Pn in 812HS were significantly higher than those in 812S. Besides, high intensity of sunlight led to a lower increase rate of POD and CAT activities in 812HS. Therefore, the contents of O2?, H2O2, and MDA in 812HS became higher than those in 812S. The result implied that the leaf photo-oxidation of mutant 812HS mainly results from higher sensitivity of PSII activities and lower CAT, POD activities under high intensity of sunlight.

Key words: Photo-oxidation, Photochemical activity, Antioxidative enzyme activity

[1] James B, Bertil A. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci, 1992, 17: 61–66

[2] Satoshi K, Takehiro M, Yuhi S, Hiroshi F, Yuji S, Toshio S, Amane M, Katsumi A, Chikahiro M. Cyclic electron flow around PSI functions in the photoinhibited rice leaves. Soil Sci Plant Nutr, 2011, 57: 105–113

[3] Erling Ö, Eva R. On the significance of photoinhibition of photosynthesis in the field and its generality among species. Photosynth Res, 1992, 33: 63–71

[4] Eva R, Gunnar W, Erling Ö. Photoinhibition of photosynthesis in intact willow leaves in response to moderate changes in light and temperature. Physiol Plant, 1991, 83: 390–396

[5] Takahashi S, Badger M R. Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci, 2011, 16: 53–60

[6] Long S P, Humphries S, Falkowski P G. Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45: 633–662

[7] 彭姣凤, 张磊. 光氧化的成因及其削减机制. 生命科学研究, 2006, 4: 83–90

Peng J F, Zhang L. Causes for the formation and reduction mechanisms of photooxidation. Life Sci Res, 2006, 4: 83–90 (in Chinese with English abstract)

[8] 李霞, 严建民, 季本华, 焦德茂. 光氧化和遮荫条件下水稻的光合生理特性的品种差异. 作物学报, 1999, 25: 301–308

Li X, Yan J M, Ji B H, Jiao D M. Varietal difference in photosynthetic characteristics of rice under photooxidation and shading. Acta Agron Sin, 1999, 25: 301–308 (in Chinese with English abstract)

[9] Jin H K, Choon H L. In vivo deleterious effects specific to reactive oxygen species on photosystem I and II after photo-oxidative treatments of rice (Oryza sativa L.) leaves. Plant Sci, 2005, 168: 1115–1125

[10] Ji B, Jiao D. Photoinhibition and photooxidation in leaves of indica and japonica rice under different temperatures and light intensities. Acta Bot Sin, 2001, 43: 714–720

[11] Ye J W, Gong Z Y, Chen C G, Mi H L, Chen G Y. A mutation of OSOTP 51 leads to impairment of photosystem I complex assembly and serious photo-damage in rice. Integr Plant Biol, 2012, 54: 87–98

[12] Zhou Y, Gong Z, Yang Z, Yuan Y, Zhu J, Wang M, Yuan F, Wu S, Wang Z, Yi C, Xu T, Ryom M, Gu M, Liang G. Mutation of the Light-Induced Yellow Leaf 1 Gene, which encodes a geranial reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS One, 2013, 8(9): e75299

[13] 赖东, 夏士健, 吕川根,魏晓东, 刘少奎, 张斌, 廖慧敏, 颜文飞, 宗寿余, 张启军. 水稻光氧化基因LPO1(t)的初步定位. 江苏农业学报, 2012, 28: 1212–1217

Lai D, Xia S J, Lü C G, Wei X D, Liu S K, Zhang B, Liao H M, Yan W F, Zong S Y, Zhang Q J. Mapping a leaf photo-oxidation gene LPO1(t) in rice. Jiangsu Agric Sci, 2012, 28: 1212–1217 (in Chinese with English abstract)

[14] 夏士健, 吕川根. 水稻叶片光氧化研究进展. 杂交水稻, 2012, 27(5): 1–8

Xia S J, Lü C G. Research progress on leaf photooxidation in rice. Hybrid Rice, 2012, 27(5): 1–8 (in Chinese with English abstract)

[15] Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol, 1949, 24: 1–15

[16] Schansker G, Tóth S Z, Strasser R J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta-Bioenergetics, 2005, 1706: 250–261

[17] Jérémie S, Jean G, Stéphane H, Olivier P, Patrick O, François L, Liliane B. Physiological and biochemical response to photooxidative stress of the fundamental citrus species. Sci Hortic, 2012, 147: 126–135

[18] Ketcham S R, Davenport J W, Warncke K, McCarty R E. Role of the gamma subunit of chloroplast coupling factor 1 in the light-dependent activation of photophosphorylation and ATPase activity by dithiothreitol. Biol Chem, 1984, 259: 7286-7293

[19] Garc??a L C, Hervás A, Nvas C J A, Jiménez D R M, Tena M. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. spciceris. Physiol Mol Plant Pathol, 2002, 61: 325-337

[20] Mandhania S, Madan S, Sawhney V. Antioxidant defense mechanism under salt stress in wheat seedlings. Biol Plant, 2006, 50: 227-231

[21] Beers R F, Sizer I W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Biol Chem, 1952, 195: 133-140

[22] Ou L J, Zhang Z Q, Dai X Z, Zou X X. Photooxidation tolerance characters of a new purple pepper. PLoS One, 2013, 8(5): e63593

[23] 王爱国, 罗广华. 植物的超氧物自由基与轻胺反应的定量关系. 植物生理学通讯, 1990, (6): 55–57

Wang A G, Luo G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radical in plants. Plant Physiol Commun, 1990, (6): 55–57 (in Chinese with English abstract)

[24] 华春, 王仁雷. 杂交水稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化. 西北植物学报, 2003, 23: 406–409

Hua C, Wang R L. Changes of SOD and CAT activities and MDA content during senescence of hybrid rice and three lines leaves. Acta Bot Boreal-Occident Sin, 2003, 23: 406–409 (in Chinese with English abstract)

[25] Takahashi S, Milward S E, Fan D Y, Chow W S, Badger M R. How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol, 2009, 149: 1560–1567

[26] Allen J F. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci, 2003, 8: 15–19

[27] 程建峰, 沈允钢. 循环光合磷酸化. 植物生理学通讯, 2008, 44: 844–852

Cheng J F, Shen Y G. Cyclic photophosphoryation. Plant Physiol Commun, 2008, 44: 844–852 (in Chinese with English abstract)

[28] Xu Q, Fu Y, Min H, Cai S, Sha S, Cheng G. Laboratory assessment of uptake and toxicity of lanthanum (La) in the leaves of Hydrocharis dubia (Bl.) backer. Environ Sci Pollut Res, 2012, 19: 3950–3958

[29] Niu X D, Li G R, Kang Z H, Huang J L, Wang G X. Photosynthetic characteristics and antioxidant enzyme system in high chlorophyll rice Gc mutant. Russia Plant Physiol, 2012, 59: 691–695

[30] Fecht C M M, Horst W J. Does apoplastic ascorbic acid enhance manganese tolerance of Vigna unguiculata and Phaseolus vulgaris? Plant Nutr Fert Sci, 2005, 168: 590–599

[31] Aravind P, Prasad M N V. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem, 2003, 41: 391–397

[32] Feussner I, Kuhn H, Wasternack C. Lipoxygenase-dependent degradation of storage lipids. Trends Plant Sci, 2001, 6: 268–273

[1] 张英华,杨佑明,曹莲,郝杨凡,黄菁,李金鹏,姚得秀,王志敏*. 灌浆期高温对小麦旗叶与非叶器官光合和抗氧化酶活性的影响[J]. 作物学报, 2015, 41(01): 136-144.
[2] 陈坤梅,李宏伟,林凡云,陈耀锋,李滨,郑琪,李振声. 利用病毒介导基因沉默方法研究小麦抗光氧化相关基因[J]. 作物学报, 2014, 40(11): 1905-1913.
[3] 张子山,李耕,高辉远,刘鹏,杨程,孟祥龙. 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化[J]. 作物学报, 2013, 39(01): 93-100.
[4] 胡群文,辛霞,陈晓玲,刘旭,卢新雄. 水稻种子室温贮藏的适宜含水量及其生理基础[J]. 作物学报, 2012, 38(09): 1665-1671.
[5] 李宏伟,李滨,郑琪,李振声. 小麦幼苗从低光到强光适应过程中光合和抗氧化酶变化[J]. 作物学报, 2010, 36(3): 449-456.
[6] 李涛;丁在松;关东明;陈传永;孙锐;赵明. 水稻远缘杂交后代的耐强光和抗光氧化特性[J]. 作物学报, 2006, 32(12): 1913-1916.
[7] 李霞;焦德茂;戴传超. 转PEPC基因水稻对光氧化逆境的响应[J]. 作物学报, 2005, 31(04): 408-413.
[8] 欧志英;彭长连;林桂珠. 超高产水稻培矮64S/E32及其亲本叶片的光氧化特性和遗传特点[J]. 作物学报, 2004, 30(04): 308-314.
[9] 李永华;王玮;马千全;邹琦珑. 干旱胁迫下抗旱高产小麦新品系旱丰9703的渗透调节与光合特性[J]. 作物学报, 2003, 29(05): 759-764.
[10] 吴长艾;孟庆伟;邹琦;赵世杰;王玮. 小麦不同品种叶片对光氧化胁迫响应的比较研究[J]. 作物学报, 2003, 29(03): 339-344.
[11] 陈炳松;张云华;李霞;焦德茂. 超级杂交稻两优培九生育后期的光合特性和同化产物的分配[J]. 作物学报, 2002, 28(06): 777-782.
[12] 李霞;严建民;季本华;焦德茂. 光氧化和遮荫条件下水稻的光合生理特性的品种差异[J]. 作物学报, 1999, 25(03): 301-308.
[13] 林植芳;彭长连;林桂珠. C3、C4植物叶片叶绿素荧光猝灭日变化和对光氧化作用的响应[J]. 作物学报, 1999, 25(03): 284-290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!