欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (06): 832-843.doi: 10.3724/SP.J.1006.2016.00832

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

亚洲棉bZIP蛋白家族的鉴定及GaFDs基因的组织表达分析

张彦楠,蔡大润,黄先忠*   

  1. 石河子大学生命科学学院/植物基因组学实验室,新疆石河子 832003
  • 收稿日期:2015-11-13 修回日期:2016-01-11 出版日期:2016-06-12 网络出版日期:2016-03-14
  • 通讯作者: 黄先忠, E-mail: xianzhongh106@163.com, Tel: 0993-2057262
  • 基金资助:

    本研究由教育部新世纪优秀人才支持计划项目(NCET-12-1072), 国家自然科学基金项目(31360366)和新疆生产建设兵团博士基金项目(2012BB007)资助。

Identification of bZIP Protein Family in Gossypium arboreum and Tissue Expression Analysis of GaFDs Genes

ZHANG Yan-Nan,CAI Da-Run,HUANG Xian-Zhong*   

  1. Plant Genomics Laboratory / College of Life Sciences, Shihezi University, Shihezi 832003, China
  • Received:2015-11-13 Revised:2016-01-11 Published:2016-06-12 Published online:2016-03-14
  • Contact: 黄先忠, E-mail: xianzhongh106@163.com, Tel: 0993-2057262
  • Supported by:

    This study was supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-1072), National Natural Science Foundation of China (31360366), and Program for Doctor Foundation in XinJiang Production and Construction Corps (2012BB007).

摘要:

碱性亮氨酸拉链(basic leucine zipper, bZIP)是真核生物中数量最多并且最具多样性的转录因子之一,参与植物生长发育及响应生物和非生物胁迫。本研究利用亚洲棉(Gossypium arboreum)全基因组数据库,通过生物信息学分析分布在13条染色体上的159个bZIPs家族基因的全序列。系统进化、基因结构和保守基序分析表明这些基因分成13个亚家族。其中,A亚家族3个GaFD基因GaFD1GaFD2GaFD3,通过实时荧光定量PCR分析3个GaFDs基因在不同组织中的表达,结果表明GaFD1GaFD2在SAM中的表达量最高,GaFD3在茎中表达量最高。研究表明棉花基因组中具有数量众多的bZIP家族成员,不同基因结构及FD基因不同的表达特征表明bZIP基因在棉花生长发育中可能具有不同的功能,这些结果为进一步解析棉花bZIP家族基因的功能和作用机理积累了有价值的资料。

关键词: 碱性亮氨酸拉链, 亚洲棉, FD, 进化分析, 基因表达

Abstract:

The basic leucine zipper (bZIP) is one of the largest and most diverse transcription factors in eukaryotes, and is involved in various processes of plant growth and development and in response to biotic and abiotic stresses. In this study, 159 bZIP family genes were identified and their complete gene sequences were obtained by using bioinformatics analysis method, based on Gossypium arboreumwhole genome database, and 159 bZIP genes were loaded on 13 chromosomes. The 159 bZIP genes were categorized into 13 groups based on their phylogenetic relationships, gene structures and conserved motifs. In addition, three GaFD homologous genes GaFD1, GaFD2 and GaFD3 were identified, which belongs to A subfamily in G. arboretum. The expression patterns of GaFD genes in different tissues were determined by using quantitative Real-time reverse transcription PCR (qRT-PCR) method. The results showed that GaFD1 and GhFD2 were preferentially expressed in the shoot apical meristem (SAM), whereas GaFD3 was preferentially expressed in stem. The results revealed that a number of bZIP family members exist in cotton genome, and FD genes with different structures and expression patterns play different roles in the development of cotton, which provides valuable information for dissecting the function and mechanism of bZIPs in cotton.

Key words: Basic leucine zipper, Gossypium arboreum, FD, Phylogenetic analysis, Gene expression

[1]Hurst H C. Transcription factors. 1: bZIP proteins. Protein Profile, 1994, 1: 123–168
[2]Izaw T, Foster R, Chua N H. Plant bZIP protein DNA binding specificity. J Mol Biol, 1993, 230: 1131–1144
[3]Landschulz W H, Johnson P F, McKnight S L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science, 1988, 240: 1759–1764
[4]Ellenberger T E, Brandl C J, Struhl K, Harrison S C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell, 1992, 71: 1223–1237
[5]Fernandes L, Rodrigues-Pousada C, Struhl K. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol, 1997, 17: 6982–6993
[6]Estes K A, Dunbar T L, Powell J R, Ausubel F M, Troemel E R. bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc Natl Acad Sci USA, 2010, 107: 2153–2158
[7]Fassler J, Landsman D, Acharya A, Moll J R, Bonovich M, Vinson C. B-ZIP proteins encoded by the Drosophila genome: evaluation of potential dimerization partners. Genome Res, 2002, 12: 1190–1200
[8]Vinson C, Myakishev M, Acharya A, Mir A A, Moll J R, Bonovich M. Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol, 2002, 22: 6321–6335
[9]Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T. bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106–111
[10]Nijhawan A, Jain M, Tyagi A K, Khurana J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol, 2008, 146: 333–350
[11]Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang S Y. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J Integr Plant Biol, 2011, 53: 212–231
[12]Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 2008, 228: 225–240
[13]Lopez-Molina L, Mongrand S, Chua N H. postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA, 2001, 98: 4782–4787
[14]Tsuji H, Nakamura H, Taoka K, Shimamoto K. Functional diversification of FD transcription factors in rice, components of florigen activation complexes. Plant Cell Physiol, 2013, 54: 385–397
[15]Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal Transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 2000, 97: 11632–11637
[16]Dröge-Laser W, Kaiser A, Lindsay W P, Halkier B A, Loake G J, Doerner P, Dixon R A, Lamb C. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J, 1997, 16: 726–738
[17]Ang L H, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng X W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell, 1998, 1: 213–222
[18]Choi H, Hong J, Ha J, Kang J, Kim S Y. ABFs, a family of ABA-responsive element binding factors. J Biol Chem, 2000, 275: 1723–1730
[19]Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12: 599–609
[20]Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway the shoot apex. Science, 2005, 309: 1052–1056
[21]Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri Y A, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature, 2011, 476: 332–335
[22]Vicente-Carbajosa J, Moose S P, Parsons R L, Schmidt R J. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA, 1997, 94: 7685–7690
[23]Després C, DeLong C, Glaze S, Liu E, Fobert P R. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell, 2000, 12: 279–290
[24]Katagiri F, Lam E, Chua N H. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature, 1989, 340: 727–730
[25]Singh K, Foley R C, Oñate-Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5: 430–436
[26]Chuang C F, Running M P, Williams R W, Meyerowitz E M. The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev, 1999, 13: 334–344
[27]Walsh J, Freeling M. The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. Plant J, 1999, 19: 489–495
[28]Schindler U, Menkens A E, Beckmann H, Ecker J R, Cashmore A R. Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J, 1992, 11: 1261–1273
[29]Chern M S, Bobb A J, Bustos M M. The regulator of MAT2 (ROM2) protein binds to early maturation Promoters and represses PvALF-activated transcription. Plant Cell, 1996, 8: 305–321
[30]Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y. REPRESSION OF SHOOT GROWTH, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell, 2000, 12: 901–915
[31]Ringli C, Keller B. Specific interaction of the tomato bZIP transcription factor VSF-1 with a non-palindromic DNA sequence that controls vascular gene expression. Plant Mol Biol, 1998, 37: 977-988
[32]Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S. Sucrose-specific signaling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J, 1998, 15: 253–263
[33]Martínez-García J F, Moyano E, Alcocer M J, Martin C. Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define a new sub-family of bZIP transcrip-tion factors. Plant J, 1998, 13: 489–505
[34]Strathmann A, Kuhlmann M, Heinekamp T, Dröge-Laser W. BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant J, 2001, 28: 397–408
[35]Chen Z J, Scheffler B E, Dennis E, Triplett B A, Zhang T, Guo W, Chen X, Stelly D M, Rabinowicz P D, Town C D, Arioli T, Brubaker C, Cantrell R G, Lacape J M, Ulloa M, Chee P, Gingle A R, Haigler C H, Percy R, Saha S, Wilkins T, Wright R J, Van Deynze A, Zhu Y, Yu S, Abdurakhmonov I, Katageri I, Kumar P A, Mehboob-Ur-Rahman, Zafar Y, Yu J Z, Kohel R J, Wendel J F, Paterson A H. Toward sequencing cotton (Gossypium) genomes. Plant Physiol, 2007, 145: 1303–1310
[36]Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q , Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet, 2014, 46: 567–572
[37]Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44: 1098–1103
[38]Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G , Zhang X, Zhu S , Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu J Z, Zhu Y, Yu S. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015, 33: 524–530
[39]Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531–537
[40]Liu X, Zhao B, Zheng H J, Hu Y, Lu G, Yang C Q, Chen J D, Chen J J, Chen D Y, Zhang L, Zhou Y, Wang L J, Guo W Z, Bai Y L, Ruan J X, Shangguan X X, Mao Y B, Shan C M, Jiang J P, Zhu Y Q, Jin L, Kang H, Chen S T, He X L, Wang R, Wang Y Z, Chen J, Wang L J, Yu S T, Wang B Y, Wei J, Song S C, Lu X Y, Gao Z C, Gu W Y, Deng X, Ma D, Wang S, Liang W H, Fang L, Cai C P, Zhu X F, Zhou B L, Jeffrey Chen Z, Xu S H, Zhang G, Wang S Y, Zhang T Z, Zhao G P, Chen X Y. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep, 2015, 5: 14139
[41]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739
[42]Pourabed E, Ghane Golmohamadi F, Soleymani Monfared P, Razavi S M, Shobbar Z S. Basic Leucine Zipper Family in Barley: Genome-Wide Characterization of Members and Expression Analysis. Mol Biotechnol, 2015, 57: 12–26
[43]Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D. Genome-Wide Analysis of bZIP-Encoding Genes in Maize. DNA Res, 2012, 19: 463–476
[44]Lara P, Oñate-Sánchez L, Abraham Z, Ferrándiz C, Díaz I, Carbonero P, Vicente-Carbajosa J. Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. J Biol Chem, 2003, 278: 21003–21011
[45]Weisshaar B, Armstrong G A, Block A, da Costa e Silva O, Hahlbrock K. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J, 1991, 10: 1777–1786
[46]Suckow M, von Wilcken-Bergmann B, Müller-Hill B. Identification of three residues in the basic regions of the bZIP proteins GCN4, C/EBP and TAF-1 that are involved in specific DNA binding. EMBO J, 1993, 12: 1193–1200
[47]Jin Z, Xu W, Liu A. Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.). Planta, 2014, 239: 299–312

 
[1] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[2] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[3] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[4] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[5] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[6] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[7] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[8] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[9] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[10] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[11] 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660.
[12] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[13] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[14] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[15] 时丕彪,何冰,费月跃,王军,王伟义,魏福友,吕远大,顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析[J]. 作物学报, 2019, 45(12): 1841-1850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!