欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (06): 820-831.doi: 10.3724/SP.J.1006.2016.00820

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用高密度SNP 遗传图谱定位小麦穗部性状基因

刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*   

  1. 山东农业大学农学院 / 小麦品质育种研究室/作物生物学国家重点实验室,山东泰安271018
  • 收稿日期:2015-11-09 修回日期:2016-03-14 出版日期:2016-06-12 网络出版日期:2016-03-21
  • 通讯作者: 陈建省, E-mail: jshch@sdau.edu.cn, Tel: 0538-8249236; 田纪春, E-mail: jctian@sdau.edu.cn
  • 基金资助:

    本研究由山东省自然科学基金项目(2015ZRB01179, ZR2013CM004)和山东省种质资源创制课题资助。

Mapping QTLs For Wheat Panicle Traits with High Density SNP Genetic Map

LIU Kai,DENG Zhi-Ying,LI Qing-Fang,ZHANG Ying,SUN Cai-Ling,TIAN Ji-Chun*,CHEN Jian-Sheng*   

  1. Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018,China
  • Received:2015-11-09 Revised:2016-03-14 Published:2016-06-12 Published online:2016-03-21
  • Contact: 陈建省, E-mail: jshch@sdau.edu.cn, Tel: 0538-8249236; 田纪春, E-mail: jctian@sdau.edu.cn
  • Supported by:

    This study was supported by the Natural Science Foundation of Shandong Province, China (2015ZRB01179 and ZR2013CM004) and the Project of Germplasm Resource Enhancement in Shandong Province.

摘要:

小麦穗部性状之间相关性密切, 其中穗粒数和千粒重是重要的产量构成要素, 挖掘与穗部性状相关联的基因位点对分子标记辅助育种及解释基因效应具有重要意义。本研究以RIL群体(山农01-35×藁城9411) 173个F8:9株系为材料, 利用90 k小麦SNP基因芯片、DArT芯片技术及传统的分子标记技术构建的高密度遗传图谱, 在5个环境下进行穗部相关性状QTL定位。检测到位于1B、4B、5B、6A染色体上7个控制千粒重的加性QTL, 解释表型变异率6.00%~36.30%, 加性效应均来自大粒母本山农01-35; 检测到8个控制穗长的加性QTL, 解释表型变异率14.34%~25.44%; 3个控制穗粒数的加性QTL; 5个控制可育小穗数的加性QTL; 3个控制不育小穗数的加性QTL, 贡献率为8.70%~37.70%; 4个控制总小穗数的加性QTL; 6个控制小穗密度的加性QTL。通过基因型与环境互作分析, 检测到32个加性QTL, 解释表型变异率0.05%~1.05%。在4B染色体区段EX_C101685–RAC875_C27536检测到控制粒重、穗长、穗粒数、可育小穗数、不育小穗数、总小穗数的一因多效QTL,其贡献率为5.40%~37.70%, 该位点在多个环境中被检测到, 是稳定主效QTL。在6A染色体wPt-0959-TaGw2-CAPS区间上检测到控制粒重、总小穗数的QTL。研究结果为穗部性状的分子标记开发、基因精细定位和功能基因克隆奠定了基础。

关键词: 普通小麦, 90 k基因芯片, QTL定位, 穗部, SNP

Abstract:

Panicle traits of wheat are closely correlated between each other,of them grain number per spike and 1000-grain weight are important components of grain yield. In this study,we mapped quantitative trait loci (QTLs) associated with wheatspike traits using a recombinant inbred line (RIL) population (173 lines of F8:9) derived from a cross of Shannong 01-35×Gaocheng 9411.The phenotypic data were collected in five environments and the high density genetic map was constructedusing90k SNP array,DArT technology and traditional molecular markers. In a combination analysis of five environments, many additive QTLs were detected includingseven for 1000-grain weight,eight for spike length,threefor grain number per spike, five for fertile spikelet number per spike, three for sterile spikelet number per spike,four for spikelet number per spike, and six for spike density.Some QTLs showed high rates of phenotypic variation explained (PVE). For example, the PVE of QTLs for 1000-grain weight on 1B, 4B, 5B and 6A ranged from 6.00% to 36.30%,with the favorable alleles from the large-grain parent Shannong 01-35; the PVE of QTLs for spike length ranged from 14.34% to 25.44%, and thatfor sterile spikelet number per spike from 8.70% to 37.70%. In addition to additive loci,32 pairs of epistatic QTLs were detected, which explained 0.05–1.05% of the phenotypic variations. The marker interval between EX_C101685 and RAC875_C27536 on chromosome 4B showed pleiotropic effectsin 1000-grain weight, spike length, grain number per spike, fertile spike number, sterile spikelet number, and spikelet number per spike, with the PVE ranging from 5.40% to 37.70%. There stable main QTLs were detected in multiple environments. Besides, markerinterval between wPt-0959 and TaGw2-CAPS on 6Ahad a locus controllingboth 1000-grain weight and spikelet number per spike. These results are valuable in developing molecular markers, fine mapping and cloning genes for spike traits in wheat.

Key words: Common wheat, 90k array, QTL mapping, Panicle, SNP

[1] 郑德波, 杨小红, 李建生, 严建兵, 张士龙, 贺正华, 黄益勤. 基于SNP标记的玉米株高及穗位高QTL定位. 作物学报, 2013, 39: 549-556
Zheng D B, Yang X H, Li J S, Yan J B, Zhang S L, He Z H, Huang Y Q. QTL identification for plant height and ear height based on SNP mapping in maize (Zea mays L.). ActaAgron Sin,2013, 39: 549–556(in Chinese with English abstract)
[2] 关强, 张月学, 徐香玲, 孙德全, 林红, 潘丽艳, 马延华. DNA 分子标记的研究进展及几种新型分子标记技术. 黑龙江农业科学, 2008, (1): 102–104
Guan Q, Zhang Y X, Xu X L, Sun D Q, Li S Y, Lin H, Pan L Y, Ma Y H. Development of DNA molecular marker and several new types of molecular markers. Heilongjiang AgricSci, 2008, (1): 102–104 (in Chinese with English abstract)
[3] Zou Y P, Ge S. A novel molecular marker-SNPs and its application. Biodiversity Sci, 2003, 11: 370–382
[4] Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanks ley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721–726
[5] Huang X Q, Kempf H, Canal M W, Roder M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (TriticumaestivumL.). TheorAppl Genet, 2004, 109: 933–943
[6] Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. MolGenet Genomics, 2007, 277: 31–42
[7] Deng S, Wu X, Wu Y, Zhou R., Wang H, Jia J, Liu S. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. TheorAppl Genet, 2011, 122: 281–289
[8] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. TheorAppl Genet, 2014, 127: 659–675
[9] Cui F, Ding A M, Li J, Zhao C H, Wang L, Wang XQ, Qi X L, Li X F, Li G Y, Gao J R, Wang H G. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica, 2012, 186: 177–192
[10] Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, Zhang L, Ma Z. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. TheorAppl Genet, 2013, 126: 2123–2139
[11] Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheat (TriticumaestivumL.). TheorAppl Genet, 2006, 113: 753–766
[12] 丁安明, 李君, 崔法, 赵春华, 马航运, 王洪刚. 利用小麦关联RIL群体定位产量相关性状QTL. 作物学报, 2011, 37: 1511–1524
Ding A M, Li J, Cui F, Zhao C H, Ma H Y, Wang H G. QTL mapping for yield related traits using two associated RIL populations of wheat. ActaAgron Sin, 2011, 37: 1511–1524 (in Chinese with English abstract)
[13] 王瑞霞, 张秀英, 伍玲, 王瑞, 海林, 游光霞, 闫长生, 肖世和. 不同生态环境下冬小麦籽粒大小相关性状的QTL分析. 中国农业科学, 2009, 42: 398–407
Wang R X, Zhang X Y, Wu L, Wang R, Hai L, You G X, Yan C S, Xiao S H. QTL analysis of grain size and related traits in winter wheat under different ecological environments. SciAgric Sin, 2009, 42: 398–407 (in Chinese with English abstract)
[14] 姚琴, 周荣华, 潘昱名, 傅体华, 贾继增. 小麦品种偃展1号与品系早穗30重组自交系群体遗传连锁图谱构建及重要农艺性状的QTL分析. 中国农业科学, 2010, 43: 4130–4139
Yao Q, Zhou R H, Pan Y M, Fu T H, Jia J Z. Construction of genetic linkage map and QTL analysis of agronomic important traits based on a RIL population derived from common wheat variety Yanzhan 1 and Zaosui 30. SciAgric Sin, 2010, 43: 4130–4139 (in Chinese with English abstract)
[15] Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (TriticumaestivumL.). TheorAppl Genet, 2002, 105: 921–936
[16] Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, BernardS, Bernard M. Location of genes involved in ear compactness in wheat (Triticumaestivum) by means of molecular markers. Mol Breed, 2000, 6: 247–255
[17] 张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009, 35: 270–278
Zhang K P, Xu X B, Tian J C. QTL mapping for grain yield and spike related traits in common wheat. ActaAgron Sin, 2009, 35: 270–278 (in Chinese with English abstract)
[18] 吴秋红, 陈娇娇, 陈永兴, 周升辉, 张德云, 王国鑫, 王振忠, 王立新, 袁成国, 尤明山, 刘志勇. 燕大1817/北农6 号重组自交系群体穗部性状的QTL定位. 作物学报, 2015, 41: 349–358
Wu Q H, Chen J J, Chen Y X, Zhou S H, Zhang D Y, Wang G X, Wang Z Z, Wang L X, Yuan C G, You M S, Liu Z Y. Mapping quantitative trait loci related to spike traits using a RILs population of Yanda 1817 × Beinong 6 in wheat (TriticumaestivumL.). ActaAgron Sin,2015, 41: 349–358 (in Chinese with English abstract)
[19] 宋彦霞, 景蕊莲, 霍纳新, 任正隆, 贾继增. 普通小麦(Triticumaestivum L.)不同作图群体抽穗期QTL分析. 中国农业科学, 2006, 39: 2186–2193
Song Y X, Jing R L, Huo N X, Ren Z L, Jia J Z. Detection of QTL for heading in common wheat (Triticumaestivum L.) Using Different Populations. SciAgric Sin, 2006, 39: 2186–2193 (in Chinese with English abstract)
[20] 李文才, 李涛, 赵逢涛, 李兴峰, 王洪刚. 小麦D基因组产量性状QTL定位. 华北农学报, 2005, 20(1): 23–26
Li W C, Li T, Zhao F T, Li X F, Wang H G. QTL of wheat yield traits in D genome. ActaAgricBoreali-Sin,2005, 20(1): 23–26 (in Chinese with English abstract)
[21] Patil R M, Tamhankar S A, Oak M D. Mapping of QTL for agronomic traits and kernel charactersin durum wheat (Triticum durum Desf.). Euphytica, 2013, 190: 117–129
[22] Sears E R. The aneuploids of common wheat. Univ Miss Res Bull, 1954, 572: 1–58
[23] Rao M V P. Mapping of the sphaerococcum gene “S” on chromosome 3D of wheat. Cereal Res Commun,1977, 5: 15–17
[24] Kato K, Miura H, Sawada S. QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. TheorAppl Genet, 1999, 98: 472–477
[25] Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G. An integrative genetic linkage map of winter wheat (TriticumaestivumL.).TheorAppl Genet, 2003, 107: 1235–1242
[26] Johnson E B, Nalam V J, Zemetra R S, Riera-Lizarazu O. Mapping the compactum locus in wheat (TriticumaestivumL.) and its relationship to other spike morphology genes of the Triticeae. Euphytica, 2008, 163: 193–201
[27] Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics, 2007, 277: 31–42
[28] Wang J S, Liu W H, Wang H, Li L H, Wu J, Yang X M, Li X Q, Gao A N. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 2011, 177: 277-292
[29] Kearsey M J, Pooni H S. The Genetical Analysis of Quantitative Traits. Garland Science(Publishers) Ltd.,Chapman and Hall, London, 2004. pp 65–66
[30] 陈建省,陈广风, 李青芳, 张晗, 师翠兰, 孙彩铃, 邓志英, 刘凯, 谷植群, 田纪春. 利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析. 中国农业科学, 2014, 47: 4769–4779
Chen J S,Chen G F, Li Q F, Zhang H, Shi C L, Sun C L, Deng Z Y, Liu K, Gu Z Q, Tian J C. Construction of genetic map using genotyping chips and QTL analysis of grain weight. SciAgric Sin,2014, 47: 4769–4779 (in Chinese with English abstract)
[31] 唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展. 中国农学通报, 2012, 28(12): 154–158
Tang L Q, Xiao C L, Wang W P. Research and application progress of SNP markers. Chin AgricSci Bull,2012, 28(12): 154–158 (in Chinese with English abstract)
[32] 卢翔, 张锦鹏, 王化俊, 杨欣明, 李秀全, 李立会. 小麦–冰草衍生后代3558-2穗部相关性状的遗传分析和QTL定位. 植物遗传资源学报, 2011, 12: 86–91
Lu X, Zhang J P, Wang H J. Genetic Analysis and QTL mapping of wheat spike traits in a derivative line 3558-2 from wheat × Agropyroncristatum offspring. J Plant Genet Resour,2011, 12: 86–91 (in Chinese with English abstract)
[33] Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl AcadSci USA, 2013, 110: 8057–8062
[34] Shah M M, Gill K S, Baenziger P S, Yen Y, Kaeppler S M, Ariyarathne H M. Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci, 1999, 39: 1728–1732
[35] Li Q F, Zhang Y, Liu T T, Wang F F, Liu K, Chen J S, Tian J C. Genetic analysis of kernel weight and kernel size in wheat (TriticumaestivumL.) using unconditional and conditional QTL mapping. Mol Breed, 2015, 35: 194
[36] Jantasuriyarat C, Vales M I, Waston C J W, Riera-Lizarazu O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticumaestivum L.).TheorAppl Genet, 2004, 108: 261–273
[37] 王瑾, 廖祥政, 杨学举, 周荣华, 贾继增. 人工合成小麦Am3大穗多粒QTL的发掘与利用. 植物遗传资源学报, 2008, 9: 277–282
Wang J, Liao X Z, Yang X J, Zhou R H, Jia J Z. Mapping of large-spike and much-kernel QTL by using a synthetic wheat Am3 as donor. J Plant Genet Resour, 2008, 9: 277–282 (in Chinese with English abstract)
 
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[5] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[8] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[9] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[10] 程艳双, 胡美艳, 杜志敏, 闫秉春, 李丽, 王祎玮, 鞠晓堂, 孙丽丽, 徐海. 减氮对辽粳5号/秋田小町RIL群体茎秆维管束、穗部和产量
性状的影响及其相互关系
[J]. 作物学报, 2021, 47(5): 964-973.
[11] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[12] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[13] 王蕊, 施龙建, 田红丽, 易红梅, 杨扬, 葛建镕, 范亚明, 任洁, 王璐, 陆大雷, 赵久然, 王凤格. 玉米杂交种纯度鉴定SNP核心引物的确定及高通量检测方案的建立[J]. 作物学报, 2021, 47(4): 770-779.
[14] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[15] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!