欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (07): 1016-1025.doi: 10.3724/SP.J.1006.2016.01016

• 耕作栽培·生理生化 • 上一篇    下一篇

养分管理对直播稻产量和氮肥利用率的影响

郭九信1,孔亚丽1,谢凯柳1,李东海2,冯绪猛1,3,凌宁1,王敏1,郭世伟1,*   

  1. 1 南京农业大学资源与环境科学学院, 江苏南京 210095; 2 扶余市农业技术推广中心, 吉林松原 138000; 3 南京农业大学农村发展学院, 江苏南京 210095
  • 收稿日期:2015-12-09 修回日期:2016-03-14 出版日期:2016-07-12 网络出版日期:2016-03-22
  • 通讯作者: 郭世伟, E-mail: sguo@njau.edu.cn, Tel: 025-84396393
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2013CB127403)和国家公益性行业(农业)科研专项(201103003和201203013)资助。

Effects of Nutrient Management on Yield and Nitrogen Use Efficiency of Direct Seeding Rice

GUO Jiu-Xin1,KONG Ya-Li1,XIE Kai-Liu1,LI Dong-Hai2,FENG Xu-Meng1,3,LING Ning1,WANG Min1,GUO Shi-Wei1,*   

  1. 1 College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2 Agricultural Technology Extension and service station of Fuyu County, Songyuan 138000, China; 3 College of Country Development, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2015-12-09 Revised:2016-03-14 Published:2016-07-12 Published online:2016-03-22
  • Contact: 郭世伟, E-mail: sguo@njau.edu.cn, Tel: 025-84396393
  • Supported by:

    This study was supported by the National Basic Research Program of China (973 Program, 2013CB127403) and the China Special Fund for Agro-scientific Research in the Public Interest (201103003 and 201203013).

摘要:

为探明不同养分管理模式在实地农户种植条件下对直播水稻产量和氮肥利用率的影响。本试验于2011年6月至2013年11月在江苏省兴化市茅山镇基本农田保护区的田间稻麦轮作条件下,分别选取茅山东村、茅山西村和冯顾村各8个农户,开展3个不同养分管理模式试验,设置了不施肥对照(CK)、农民习惯施肥(FFP)和优化施肥(OPT1和OPT2)4个处理,主要研究了水稻产量及构成因子、氮累积分配和氮肥利用率等对不同养分管理模式的响应。结果表明:(1)施肥较不施肥显著提高水稻产量,优化施肥(226 kg N hm-2)在较习惯施肥(333 kg N hm-2)平均减氮32.1%的基础上显著提高水稻产量5.5%,增产原因是提高了穗粒数、结实率和千粒重;OPT2较OPT1平均增产3.1%,其原因是在孕穗期增施了钾肥(18 kg hm-2 K2O)。(2)优化施肥水稻植株各部位氮浓度、百千克籽粒需氮量和秸秆氮累积均显著低于习惯施肥,且降低营养器官的氮素分配比例。(3)优化施肥较习惯施肥显著提高水稻氮肥利用率,其氮肥偏生产力(PFPN)、氮肥农学效率(AEN)、氮肥回收效率(REN)和氮肥生理效率(PEN)分别平均增加55.5%、79.1%、18.7%和48.7%。(4)水稻植株氮累积与产量呈显著正相关,且优化施肥单位氮累积的增产效果高于习惯施肥。因此,基于氮肥总量控制、分期调控和增施钾肥的养分优化管理措施可在实地农户直播稻种植上协同实现水稻高产和氮肥高效。

关键词: 水稻, 产量, 养分管理, 氮肥利用率, 实地农户种植

Abstract:

The effects of different nutrient management models on the yield and nitrogen (N) use efficiency (NUE) of direct seeding rice were investigated under site-specific farmers cultivate practice situation. We conducted a field experiment at eight farmers’ field in basic farmland protection region with a rice-wheat rotation ecosystem in Xinghua County, Maoshan town, Jiangsu Province, from June 2011 to November 2013. Three different nutrient management models and a control were used in this experiment including fertilizer free treatment (CK), farmers’ fertilizer practice (FFP) and optimal fertilizer management 1 and 2 (OPT1 and OPT2). The rice yield and its components, N accumulation and distribution, and NUE were determined. The results showed that the rice grain yield of OPT treatments (226 kg ha-1 N) significantly increased 5.5% due to the increase of grains per panicle, seed setting percentage, and 1000-grain weight while the N fertilizer application reduced 32.1% as compared with FFP treatment (333 kg ha-1 N). The rice grain yield of OPT2 treatment was 3.1% higher than that of OPT1 treatment while resulted from increasing potassium application (18 kg ha-1 K2O) at booting stage. The N concentration of different parts of plant, N requirement for 100 kg grain, straw N accumulation and N distribution in vegetative organs of OPT treatment were significantly lower than these of FFP treatment. Compared with FFP treatment, OPT treatment also significantly improved NUE of rice plants, in which partial factor productivity of N (PFPN), agronomic efficiency of N (AEN), the recovery efficiency of N (REN) and physiological efficiency of N (PEN) increased by 55.5%, 79.1%, 18.8%, and 48.7%, respectively. There was a significantly positive correlation between plant N accumulation and grain yield in rice, and the effect of yield increase per unit N accumulation in OPT treatment was higher than that in FFP treatment. Therefore, the optimal nutrition management model, including controlling total N rate, regulating application stage of N fertilizer and increasing potassium application, can be need to obtain a comprehensive effect for high grain yield and high N fertilizer use efficiency in direct seeding rice planted by farmers.

Key words: Rice, Yield, Nutrient management, Nitrogen use efficiency, Site-specific farmer cultivate

[1]Frolking S, Qiu J, Boles S, Xiao X, Liu J, Zhuang Y, Li C, Qiu X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochem Cy, 2002, 16: 38.1–38.10
[2]彭少兵, 黄建良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Roland Buresh, Christian Witt. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095–1103
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Roland B, Christian W. Research strategy in improving fertilizer nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 35: 1095–1103 (in Chinese with English abstract)
[3]Peng S, Buresh R J, Huang J, Yang J, Zou Y, Zhong X, Wang G, Zhang F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37–47
[4]Zhang F, Fan M, Zhang W. Principles, dissemination and performance of fertilizer best management practices developed in China. In: Fertilizer Best Management Practices: General Principles, Strategy for Their Adoption and Voluntary Initiatives vs. Regulations. International Fertilizer Industry Association, Brussels, Belgium, 2007. pp 193–201
[5]Yin F, Fu B, Mao R. Effects of nitrogen fertilizer application rates on nitrate nitrogen distribution in saline soil in the Hai River Basin, China. J Soil Sediment, 2007, 7: 136–142
[6]Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z, Freney J R, Maetinelli L A, Seitzinger S P, Sutton M A. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320: 889–892
[7]Agrawal G D, Lunkad S K, Malkhed T. Diffuse agricultural nitrate pollution of groundwaters in India. Water Sci Technol, 1999, 39: 67–75
[8]Sayer J, Cassman K G. Agricultural innovation to protect the environment. Proc Natl Acad Sci USA, 2013, 110: 8345–8348
[9]West P C, Gerber J S, Engstrom P M, Mueller N D, Brauman K A, Carlson K M, Cassidy E S, Johnston M, MacDonald G K, Ray D K, Siebert S. Leverage points for improving global food security and the environment. Science, 2014, 345: 324–328
[10]Haefele S M, Jabbar S M A, Siopongco J D L C, Tirol-Padre A, Amarante S T, Cruz P C S, Cosico W C. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels. Field Crops Res, 2008, 107: 137–146
[11]李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲. 水稻高产氮高效型品种的物质积累与转运特性. 作物学报, 2013, 39: 101–109
Li M, Zhang H C, Yang X, Ge M J, Ma Q, Wei H Y, Dai Q G, Huo Z Y, Xu K. Characteristics of dry matter accumulation and translocation in rice cultivars with high yield and high nitrogen use efficiency. Acta Agron Sin, 2013, 39: 101–109 (in Chinese with English abstract)
[12]孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40: 1639–1649
Sun Y J, Sun Y Y, Xu H, Li Y, Yan F J, Jiang M J, Ma J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2014, 40: 1639–1649 (in Chinese with English abstract)
[13]王绍华, 曹卫星, 丁艳锋, 田永超, 姜东. 水氮互作对水稻氮吸收与利用的影响. 中国农业科学, 2004, 37: 497–501
Wang S H, Cao W X, Ding Y F, Tian Y C, Jiang D. Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice. Sci Agric Sin, 2004, 37: 497–501 (in Chinese with English abstract)
[14]Sui B, Feng X, Tian G, Hu X, Shen Q, Guo S. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Res, 2013, 150: 99–107
[15]龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻氮素吸收利用与转运差异研究. 植物营养与肥料学报, 2014, 20: 796–810
Gong J L, Xing Z P, Hu Y J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Differences of nitrogen uptake, utilization and translocation between indica and japonica super rice. Plant Nutr Fert Sci, 2014, 20: 796–810 (in Chinese with English abstract)
[16]邹应斌, 敖和军, 夏冰, 唐启源, 彭少兵, Buresh R J. 不同氮肥施用对杂交稻产量及其氮素利用效率的影响. 作物研究, 2008, 22(4): 214–219
Zou Y B, Ao H J, Xia B, Tang Q Y, Peng S B, Roland J B. Effects of different nitrogen application on the yield and nitrogen use efficiency in hybrid rice. Crop Res, 2008, 22(4): 214–219 (in Chinese with English abstract)
[17]王伟妮, 鲁剑巍, 鲁明星, 李小坤, 李云春, 李慧. 湖北省早、中、晚稻施氮增产效应及氮肥利用率研究. 植物营养与肥料学报, 2011, 17: 545–553
Wang W N, Lu J W, Lu M X, Li X K, Li Y C, Li H. Effect of nitrogen fertilizer application and nitrogen use efficiency of early, middle and late rice in Hubei Province. Plant Nutr Fert Sci, 2011, 17: 545–553 (in Chinese with English abstract)
[18]张智, 王伟妮, 李昆, 马红菊, 苟曦, 鲁剑巍. 四川省不同区域水稻氮肥施用效果研究. 土壤学报, 2015, 52: 235–241
Zhang Z, Wang W N, Li K, Ma H J, Gou X, Lu J W. Effects of nitrogen fertilization on rice in different regions of Sichuan Province. Acta Pedol Sin, 2015, 52: 235–241 (in Chinese with English abstract)
[19]邬刚, 袁嫚嫚, 孙义祥, 钱晓华. 安徽化肥消费现状和粮食作物节肥潜力分析. 安徽农业科学, 2015, 43(13): 70–73
Wu G, Yuan M M, Sun Y X, Qian X H. Fertilizer consumption and fertilizer saving potential analysis for major cereal crops in Anhui. J Anhui Agric Sci, 2015, 43(13): 70–73 (in Chinese with English abstract)
[20]马立珩, 张莹, 隋标, 刘彩玲, 王萍, 顾锁娣, 沈其荣, 徐茂, 郭世伟. 江苏省水稻过量施肥的影响因素分析. 扬州大学学报, 2011, 32(2): 48–52
Ma L H, Zhang Y, Sui B, Liu C L, Wang P, Gu S D, Shen Q R, Xu M, Guo S W. The impact factors of excessive fertilization in Jiangsu Province. J Yangzhou Univ, 2011, 32(2): 48–52 (in Chinese with English abstract)
[21]安宁, 范明生, 张福锁. 水稻最佳作物管理技术的增产增效作用. 植物营养与肥料学报, 2015, 21: 846–852
An N, Fan M S, Zhang F S. Best crop management practices increase rice yield and nitrogen use efficiency. Plant Nutr Fert Sci, 2015, 21: 846–852 (in Chinese with English abstract)
[22]Cakmak I, Hoffland E. Zinc for the improvement of crop production and human health. Plant Soil, 2012, 361: 1–2
[23]Fageria N K, Baligar V C. Enhancing nitrogen use efficiency in crop plants. Adv Agron, 2005, 88: 97–185
[24]孟琳, 张小莉, 蒋小芳, 黄启为, 徐阳春, 杨兴明, 沈其荣. 有机肥料氮替代部分无机氮对水稻产量的影响及替代率研究. 植物营养与肥料学报, 2009, 15: 290–296
Meng L, Zhang X L, Jiang X F, Huang Q W, Xu Y C, Yang X M, Shen Q R. Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and proper substitution rate. Plant Nutr Fert Sci, 2009, 15: 290–296 (in Chinese with English abstract)
[25]Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459–463
[26]许仙菊, 许建平, 宁运旺, 张永春, 马洪波. 稻麦轮作周年氮磷运筹对作物产量和土壤养分含量的影响. 中国土壤与肥料, 2013, (5): 75–59
Xu X J, Xu J P, Ning Y W, Zhang Y C, Ma H B. Effects of nitrogen-phosphorus reduction and phosphorus application patterns on crop yields and soil nutrients in rice−wheat rotation system. Soil Fert Sci China, 2013, (5): 75–59 (in Chinese with English abstract)
[27]王道中, 张成军, 郭熙盛. 减量施肥对水稻生长及氮素利用率的影响. 土壤通报, 2012, 43(1): 161–165
Wang D Z, Zhang C J, Guo X S. Effects of lower fertilizer on rice growth and nitrogen use efficiency. Chin J Soil Sci, 2012, 43(1): 161–165 (in Chinese with English abstract)
[28]Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, Sun Y, Peng X, Zhang J, He M, Zhu Y, Xue J, Wang G, Wu L, An N, Wu L, Ma L, Zhang W, Zhang F. Producing more grain with lower environmental costs. Nature, 2014, 514: 486–489
[29]张玲, 谢崇华, 李伟, 杨国涛. 氮钾对杂交水稻B优827籽粒淀粉含量及淀粉合成酶活性的影响. 中国水稻科学, 2008, 22: 551–554
Zhang L, Xie C H, Li W, Yang G T. Effects of nitrogen and potassium on starch content and activities of starch synthase in grains of hybrid rice B You 827. Chin J Rice Sci, 2008, 22: 551–554 (in Chinese with English abstract)
[30]Zhang F, Niu J, Zhang W, Chen X, Li C, Yuan L, Xie J. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil, 2010, 335(1/2): 21–34
[31]Deng M H, Shi X J, Tian Y H, Yin B, Zhang S L, Zhu Z L, Kimura S D. Optimizing nitrogen fertilizer application for rice production in the Taihu Lake Region, China. Pedosphere, 2012, 22: 48–57
[32]Koch B, Khosla R, Frasier W M, Inman D. Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agron J, 2004, 96: 1572–1580
[33]Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA, 2009, 106: 3041–3046
[34]Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J S, Meng Q F, Hou P, Yue S C, Römheld V, Zhang F S. Integrated soil-crop system management for food security. Proc Natl Acad Sci USA, 2011, 108: 6399–6404
[35]孙永健, 孙园园, 刘树金, 杨志远, 程洪彪, 贾贤文, 马均. 水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响. 作物学报, 2011, 37: 2221–2232
Sun Y J, Sun Y Y, Liu S J, Yang Z Y, Cheng H B, Jia X W, Ma J. Effects of water management and nitrogen application strategies on nutrient absorption, transfer, and distribution in rice. Acta Agron Sin, 2011, 37: 2221–2232 (in Chinese with English abstract)
[36]Jaynes D B, Colvin T S, Karlen D L, Cambardella C A, Meek D W. Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate. J Environ Qual, 2001, 30: 1305–1314
[37]Zhu J G, Liu G, Han Y, Zhang Y L, Xing G X. Nitrate distribution and destrification in the saturated zone of paddy field under rice/wheat rotation. Chemosphere, 2003, 50: 725–732
[38]Zhang F, Chen X, Vitousek P. Chinese agriculture: An experiment for the world. Nature, 2013, 497: 33–35
[39]Zheng Y M, Ding Y F, Liu Z H, Wang S H. Effects of panicle nitrogen fertilization on non-structural carbohydrate and grain filling in indica rice. Agric Sci China, 2010, 9: 1630–1640
[40]Shang Q, Gao C, Yang X, Wu P, Ling N, Shen Q, Guo S. Ammonia volatilization in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Biol Fert Soils, 2014, 50: 715–725

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!