欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (07): 967-973.doi: 10.3724/SP.J.1006.2017.00967

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

十个八倍体小偃麦的细胞学鉴定和染色体构成分析

亓晓蕾1,2,**,鲍印广1,**,李兴锋1,钱兆国2,王瑞霞2,吴科2,王洪刚1,*   

  1. 1山东农业大学农学院 / 国家小麦改良分中心/作物生物学国家重点实验室,山东泰安 271018;2泰安市农业科学研究院,山东泰安 271000
  • 收稿日期:2016-12-05 修回日期:2017-03-02 出版日期:2017-07-12 网络出版日期:2017-03-17
  • 通讯作者: 王洪刚, E-mail: hgwang@sdau.edu.cn, Tel: 0538-8242141
  • 基金资助:

    本研究由国家重点研发计划项目(2016YFD0102004)和山东省现代农业产业技术体系(SDAIT-04-021-12)资助。

Cytological Identification and Chromosome Constitution Analyses of Ten Octoploid Trititrigia Accessions

QI Xiao-Lei1,2,** ,BAO Yin-Guang1,**,LI Xing-Feng1,QIAN Zhao-Guo2,WANG Rui-Xia2,WU Ke2,WANG Hong-Gang1,*   

  1. 1 College of Agronomy, Shandong Agricultural University / Tai’an Subcentre of National Wheat Improvement Centre / State Key Laboratory of Crop Biology, Shandong, Tai’an 271018, China; 2 Tai’an Academy of Agricultural Sciences, Shandong, Tai’an 271000, China
  • Received:2016-12-05 Revised:2017-03-02 Published:2017-07-12 Published online:2017-03-17
  • Contact: Wang Honggang, E-mail: hgwang@sdau.edu.cn, Tel: 0538-8242141
  • Supported by:

    This study was supported by the Key Project of the National Research and Development Program (2016YFD0102004) and the Modern Agricultural Technology System of Shandong Province (SDAIT-04-021-12).

摘要:

培育新的八倍体小偃麦,对于利用偃麦草遗传物质进行小麦的遗传改良具有重要意义。本研究利用细胞学和基因组原位杂交技术,对从中间偃麦草与小麦品种烟农15杂交后代选育出的山农TE256、山农TE259、山农TE261、山农TE262、山农TE263、山农TE265、山农TE266、山农TE267-1、山农TE270和山农TE274等10个八倍体小偃麦进行了细胞学鉴定和染色体构成分析。结果表明,10个八倍体小偃麦绝大多数单株根尖细胞的染色体数目为2n = 56,个别单株含有54或55条染色体;大多数2n = 56单株的花粉母细胞在减数分裂中期I的染色体构型为2n = 28II,少数花粉母细胞存在单价体、三价体或四价体,后期I染色体可均等分向两极,仅有极少数细胞出现染色单体提前分离等现象;10个八倍体小偃麦均含有普通小麦的全套染色体和中间偃麦草的1个混合染色体基组,其中间偃麦草染色体是由来自中间偃麦草3个不同染色体基组的染色体构成的混合染色体基组,其染色体构成分别为2St+8JS+2J+2J-St、2St+8JS+4J、2St+8JS+2J+2J-St、2St+8JS+2J+2J-St、2St+8JS+2J+2J-St、6St+4JS+2J+2J-St、4St+6JS+2J+2J-St、2St+8JS+4J、2St+8JS+4J和4St+6JS+4J,与目前已报道的八倍体小偃麦均有所不同。研究结果可为这些新型八倍体小偃麦的研究和有效利用提供参考依据。

关键词: 中间偃麦草, 八倍体小偃麦, GISH, 染色体构成

Abstract:

Developing new octoploid Trititrigia is of great significance for using Thinopyrum intermedium to the genetic improvement of common wheat. Ten octoploid Trititrigia accessions, i.e., Shannong TE256, Shannong TE259, Shannong TE261, Shannong TE262, Shannong TE263, Shannong TE265, Shannong TE266, Shannong TE267-1, Shannong TE270 and Shannong TE274, were developed from the progenies of the cross between Thinopyrum intermedium and common wheat variety ‘Yannong 15’. In this study, cytological methods and genomic in situ hybridization (GISH) were employed to determine cytological stability and chromosome constitutions of the 10 octoploid Trititrigia accessions. Mitotic observation indicated that most plants of octoploid Trititrigia had 56 chromosomes and a few had 54 or 55 chromosomes. Chromosomes in most pollen mother cells of plants with 2n = 56 formed 28 bivalents, showing a high degree of cytogenetic stability, simultaneously, univalents, trivalents and tetravalents appeared occasionally at meiotic metaphase I. At meiosis anaphase I (PMC AI), most chromosomes segregated equally to the two poles except for several univalent chromosomes moving ahead in very few cells. Fourteen Th. intermedium chromosomes were observed to be added to the whole set of common wheat chromosomes in each octoploid Trititrigia, and the alien chromosome constitutions of the 10 octoploid Trititrigia accessions were 2St+8JS+2J+2J-St, 2St+8JS+4J, 2St+8JS+2J+2J-St, 2St+8JS+2J+2J-St, 2St+8JS+2J+2J-St, 6St+4JS+2J+2J-St, 4St+6JS+2J+2J-St, 2St+8JS+4J, 2St+8JS+4J, and 4St+6JS+4J. These alien chromosome constitutions were different from those reported in octoploid Trititrigia, suggesting that the 10 octoploid Trititrigia accessions are novel materials and might be valuable in wheat breeding programs.

Key words: Th. intermedium, Octoploid Trititrigia, GISH, Chromosome constitution

[1]王洪刚, 刘树兵, 亓增军, 孔凡晶, 高居荣. 中间偃麦草在小麦遗传改良中的应用研究. 山东农业科学, 2000, 31: 333–336 Wang H G, Liu S B, Qi Z Y, Kong F J, Gao J R. Application studies of Elytrigia intermedium in hereditary of wheat. Shandong Agric Sci, 2000, 31: 333–336 (in Chinese with English abstract) [2]孙善澄. 小偃麦类型与物种形成的探讨. 作物学报, 1980, 6: 1–10 Sun S C. Research on Triticum agropyron form and species formation. Acta Agron Sin, 1980, 6: 1–10 (in Chinese with English abstract) [3]Cauderon Y. étude cytogénétique del’évolution du matériel issu decroisement entre Triticum aestivum et Agropyron intermedium. Ann de l’Amél Plantes, 1966, 16: 43–70 [4]王洪刚, 刘树兵, 李兴锋, 高居荣, 封德顺, 陈冬花. 六个八倍体小偃麦的选育和鉴定. 麦类作物学报, 2006, 26(4): 6–10 Wang H G, Liu S B, Li X F, Gao J R, Feng D S, Chen D H. Breeding and identification of six octoploid Trititrigia. J Triticeae Crops, 2006, 26(4): 6–10 (in Chinese with English abstract) [5]Liu S B, Wang H G, Zhang X Y, Li X F, Li D Y, Duan X Y, Zhou Y L. Molecular cytogenetic identification of a wheat–Thinopyrum intermedium (Host) Barkworth & DR Dewey partial amphiploid resistant to powdery mildew. J Integr Plant Biol, 2005, 47: 726–733 [6]Bao Y G, Li X F, Liu S B, Cui F, Wang H G. Molecular cytogenetic characterization of a new wheat-Thinopyrum intermedium partial amphiploid resistant to powdery mildew and stripe rust. Cytogenet Genome Res, 2009, 126: 390–395 [7]Bao Y G, Wu X, Zhang C, Li X F, He F, Qi X L, Wang H G. Genomic compositions and reactions to powdery mildew and stripe rust of four novel wheat Thinopyrum intermedium partial amphiploids. J Genet Genomics, 2014, 42: 663–666 [8]张学勇, 董玉琛. 小麦与彭梯卡堰麦草杂种及其衍生后代的细胞遗传学研究: II. 来自小麦和彭梯卡(长穗)偃麦草及中间偃麦草杂种后代11个八倍体小偃麦的比较研究. 遗传学报, 1994, 21: 287–296 Zhang X Y, Dong Y C. Cytogenetic research on hybrids of Triticum with Thinopyrum ponticum and their derivatives: II. Comparative research of 11 partial amphiploids derived from hybrid offspring of T. aestivum with both Th. ponticum and Th. intermedium. Acta Genet Sin, 1994, 21: 287–296 (in Chinese with English abstract) [9]Chen Q, Conner R L, Laroche A, Thomas J B. Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization. Genome, 1998, 41: 580–586 [10]Chen Q, Conner R L, Ahmad F, Laroche A, Fedak G, Thomas J B. Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum × Thinopyrum ponticum and T. aestivum × Th. intermedium as sources of resistance to Wheat streak mosaic virus and its vector, Aceria tosichella. Theor Appl Genet, 1998, 97: 1–8 [11]Chen Q, Conner R L, Laroche A, Ji W Q, Armstrong K C, Fedak G. Genomic in situ hybridization analysis of Thinopyrum chromatin in a wheat–Th. intermedium partial amphiploid and six derived chromosome addition lines. Genome, 1999, 42: 1217–1223 [12]Chen Q, Conner R L, Li H, Sun S C, Ahmad F, Laroche A, Graf R J. Molecular cytogenetic discrimination and reaction to Wheat streak mosaic virus and the wheat curl mite in Zhong series of wheat–Thinopyrum intermedium partial amphiploids. Genome, 2003, 46: 135–145 [13]Han F P, Liu B, Fedak G, Liu Z H. Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 2004, 109: 1070–1076 [14]Kruppa K, Molnár-Láng M. Simultaneous visualization of different genomes (J, JSt and St) in a Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid (Poaceae) and in its parental species by multicolour genomic in situ hybridization (mcGISH). Comp Cytogenet, 2016, 10: 283–293 [15]Zhang X Y, Koul A, Petroski R, Ouellet T, Fedak G. Molecular verification and characterization of BYDV-resistant germplasm derived from hybrids of wheat with Thinopyrum ponticum and Th. intermedium. Theor Appl Genet, 1996, 93: 1033–1039 [16]Fedak G, Chen Q, Conner R L, Laroche A, Petroski R, Armstrong K W. Characterization of wheat–Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization. Genome, 2000, 43: 712–719 [17]Yang Z J, Li G R, Chang Z J, Zhou J P, Ren Z L. Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica, 2006, 149: 11–17

[1] 陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定[J]. 作物学报, 2022, 48(2): 511-517.
[2] 王秀娟,陈新宏,庞玉辉,敬樊,张军,胡思远,昝凯,武军,杨群慧,赵继新*. 小麦–华山新麦草异代换系DH2322的分子细胞遗传学鉴定[J]. 作物学报, 2015, 41(02): 207-213.
[3] 李建波,乔麟轶,李欣,张晓军,詹海仙,郭慧娟,任永康,畅志坚. 小麦–中间偃麦草渗入系抗白粉病基因PmCH7124的分子定位[J]. 作物学报, 2015, 41(01): 49-56.
[4] 罗巧玲,郑琪,许云峰,李立会,韩方普,许红星,李滨,马朋涛,安调过. 390份小麦-黑麦种质材料主要农艺性状分析及优异材料的GISH与FISH鉴定[J]. 作物学报, 2014, 40(08): 1331-1339.
[5] 孙翠花,侯丽媛,郭慧娟,张晓军,贾举庆,李欣,詹海仙,畅志坚. 小麦–中间偃麦草隐形渗入系抗白粉病基因pmCH83分子定位[J]. 作物学报, 2013, 39(12): 2107-2114.
[6] 李洪杰,王晓鸣,陈怀谷,李伟,刘东涛,张会云. 小麦-偃麦草杂种后代及小麦种质资源对纹枯病的抗性[J]. 作物学报, 2013, 39(06): 999-1012.
[7] 赵海滨,张延明,史春龙,闫小丹,田超,厉永鹏,李集临. 寒地多年生小麦的选育与细胞遗传学分析[J]. 作物学报, 2012, 38(08): 1378-1386.
[8] 赵丹, 赵继荣, 黄茜, 李宁, 黄占景, 张增艳. 利用BSMV-VIGS技术快速分析小麦TNBL1基因的抗黄矮病功能[J]. 作物学报, 2011, 37(11): 2106-2110.
[9] 李钊, 庄洪涛, 杜丽璞, 周淼平, 蔡士宾, 徐惠君, 李斯深, 张增艳. 组织特异表达启动子RSS1P在转TiERF1基因小麦中的应用[J]. 作物学报, 2011, 37(10): 1897-1903.
[10] 李宁, 黄茜, 刘燕, 赵丹, 刘艳, 黄占景, 张增艳. 小麦抗病基因类似序列BRG1的分离与功能分析[J]. 作物学报, 2011, 37(06): 998-1004.
[11] 王凯;杜丽璞;张增艳;廖勇;徐惠君;姚乌兰;黄璜;杨昆;辛志勇. 中间偃麦草SGT1基因的克隆及其抗病功能的分析[J]. 作物学报, 2008, 34(03): 520-525.
[12] 向素琼;汪卫星;李晓林;陈瑶;郭启高;何桥;梁国鲁. 甘薯近缘野生种Ipomoea trifida(4x) GISH分析[J]. 作物学报, 2008, 34(02): 341-343.
[13] 姚乌兰;张增艳;陈亮. 病原诱导的中间偃麦草ERF转录因子基因的克隆及其表达特性[J]. 作物学报, 2007, 33(09): 1405-1410.
[14] 崔志富;林志珊;辛志勇;唐益苗;张增艳;卢勤. 应用GISH与STS标记鉴定小麦-中间偃麦草抗黄矮病端体系[J]. 作物学报, 2006, 32(12): 1855-1859.
[15] 林小虎;王黎明;李兴锋;陆文辉;赵逢涛;李文才;高居荣;王洪刚. 抗白粉病八倍体小偃麦和双体异附加系的鉴定[J]. 作物学报, 2005, 31(08): 1035-1040.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!