[1] 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005, 23(2): 154–158
Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Res, 2005, 23(2): 154–158 (in Chinese with English abstract)
[2] 王鑫马, 马永祥, 李娟. 紫花苜蓿营养成分及主要生物学特性. 草业科学, 2003, 20(10): 39–41
Wang X M, Ma Y X, Li J. Alfalfa nutrient composition and main biological characteristics. Acta Pratac Sin, 2003, 20(10): 39–41 (in Chinese with English abstract)
[3] 乔建江, 王堃, 杨青川. 苜蓿转基因的研究现状和前景. 中国草地学报, 2006, 28(5): 98–103
Qiao J J, Wang K, Yang Q C. Research situation and future of transgenic alfalfa. Chin J Grassland, 2006, 28(5): 98–103 (in Chinese with English abstract)
[4] ülker B,Somssich I E. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol, 2004, 7: 491–498
[5] Li J, Brader G, PalvaE T. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 2004, 16: 319–331
[6] Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J, 2008, 6: 486–503
[7] Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5(5): 199–206
[8] 李福山. 中国野生大豆资源的地理分布及生态分化研究. 中国农业科学, 1993, 26(2): 47–55
Li F S.Studies on the ecological and geographical distribution of the chinese resources of wild soybean(G. soja). Sci Agric Sin, 1993, 26(2): 47–55 (in Chinese with English abstract)
[9] Bai X, Liu J, Tang L, Cai H, Chen M, Ji W, Liu Y, Zhu Y. Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa). Funct Plant Biol, 2013, 40: 1048–1056
[10] 王臻昱, 才华, 柏锡, 纪巍, 李勇, 魏正巍, 朱延明. 野生大豆GsGST19基因的克隆及其转基因苜蓿的耐盐碱性分析. 作物学报, 2013, 38: 971–979
Wang Z Y, Cai H, Bai X, Ji W, Li Y, Wei Z W, Zhu Y M. Isolation of GsGST19 from Glycine soja and analysis of saline-alkaline tolerance for transgenic Medicago sativa. Acta Agron Sin, 2013, 38: 971–979 (in Chinese with English abstract)
[11] 魏正巍, 朱延明, 化烨, 才华, 纪巍, 柏锡, 王臻昱, 文益东. 转GsPPCK1基因苜蓿植株的获得及其耐碱性分析. 作物学报, 2013, 39: 68–75
Wei Z W, Zhu Y M, Hua Y, Cai H, Ji W, Bai X, Wang Z Y, Wen Y D. Transgenic alfalfa with GsPPCK1 and its alkaline tolerance analysis. Acta Agron Sin, 2013, 39: 68–75 (in Chinese with English abstract)
[12] 赵阳, 朱延明, 柏锡, 纪巍, 吴婧, 唐立郦, 才华. 转GsCBRLK/SCMRP双价基因苜蓿耐碱性及氨基酸含量分析. 作物学报, 2014, 40: 431–438
Zhao Y, Zhu Y M, Bai X, Ji W, Wu J, Tang L L, Cai H. Over-expressing GsCBRLK/SCMRP enhances alkaline tolerance and methionine content in transgenic Medicago sativa. Acta Agron Sin, 2014, 40: 431–438 (in Chinese with English abstract)
[13] Sun M Z, Jia B W, Cui N, Wen Y D, Duanmu H Z, Yu Q Y, Xiao J L, Zhu Y M. Functional characterization of a Glycine sojaCa2+ATPase in salt–alkaline stress responses. Plant Mol Biol, 2016, 90: 419–434
[14] Sun M Z, Sun X L, Zhao Y, Zhao C Y, Duanmu H Z, Yu Y, Ji W, Zhu Y M. Ectopic expression of GsPPCK3 and SCMRP in Medicago sativa enhances plant alkaline stress tolerance and methionine content. PLoS One, 2013, 9: e89578
[15] Duanmu H Z, Wang Y, Bai X, Cheng S F, Deyholos M K, Wong G K, Li D, Zhu D, Li R, Yu Y, Cao L, Chen C, Zhu Y M. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress. Funct Integr Genomics, 2015, 15: 651–660
[16] Rio D C, Ares M J, Hannon G J, Nilsen T W. Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harbor Protocols, 2010(6): pdb.prot5439
[17] Cline J, Braman J C, Hogrefe H H. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucl Acids Res, 1996, 24: 3546–3551
[18] Willems E, Leyns L, Vandesompele J. Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem, 2008, 379: 127–129
[19] Geu-Flores F, Nour-Eldin H H, Nielsen M T, Halkier B A. USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucl Acids Res, 2007, 35: e55
[20] Nour-Eldin H H, Hansen B G, N?rholm M H, Jensen J K, Halkier B A. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucl Acids Res, 2006, 34(18): e122
[21] 盛慧, 朱延明, 李杰, 柏锡, 才华. DREB2A基因对苜蓿遗传转化的研究. 草业科学, 2007, 24(3): 40–45
Sheng H, Zhu Y M, Li J, Bai X, Cai H.Genetic transformation of DREB2A gene into alfalfa. Acta Pratac Sin, 2007, 24(3): 40–45
[22] 丁晓东, 吕柳新. 从顽拗植物荔枝中提取基因组DNA技术的研究. 应用与环境生物学报, 2000, 6(2): 142–145
Ding X D, Lyu L X. Study on genomic DNA extraction from recalcitrant litchi. Chinese J Appl Environ Biol, 2000, 6(2): 142–145 (in Chinese with English abstract)
[23] Mishra S, Bansal S, Sangwan R S, Sangwan N S. Genotype independent and efficient Agrobacterium-mediated genetic transformation of the medicinal plant Withania somnifera. J Plant Biochem Biot, 2016, 25:191–198
[24] Hodges D M, Delong J M, Forney C F, Prange R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604–611
[25] Gibon Y, Larher F. Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Anal Biochem, 1997, 251: 153–157
[26] Wellburn A R, Lichtenthaler H. Formulae and program to determinetotal carotenoids and chlorophylls a and b of leaf extracts in different solvents. Adv Photosynth Res, 1984: 9–12
[27] Shimono M, Sugano S J, Nakayama A, Jiang C J, Ono K, Toki S, Takatsuji H. Rice WRKY45 plays a crucial role in benzothiadiazole inducible blast resistance. Plant Cell, 2007, 19: 2064–2076
[28] Marè C, Mazzucotelli E, Crosatti C, Francia E, Stanca A M, Cattivelli L. Hv-WRKY38: a new transcription factor involved in cold and drought response in barley. Plant Mol Biol, 2004, 55: 399–416
[29] 秦伟, 赵光耀, 曲志才, 张立超, 段佳磊, 李爱丽, 贾继增, 孔秀英. 小麦白粉病菌诱导的TaWRKY34基因的鉴定与分析. 作物学报, 2010, 36: 249–255
Qin W, Zhao G Y, Qu Z C, Zhang L C, Duan J L, Li A L, Jia J Z, Kong X Y. Identification and analysis of TaWRKY34 gene induced by wheat powdery mildew (Blumeria graminis f. sp. tritici). Acta Agron Sin, 2010, 36: 249–255 (in Chinese with English abstract)
[30] 王瑞, 吴华玲, 王会芳, 黄珂, 霍春艳, 倪中福, 孙其信. 小麦TaWRKY44基因的克隆、表达分析及功能鉴定. 作物学报, 2013, 39: 1944–1951
Wang R, Wu H L, Wang H F, Huang K, Huo C Y, Ni Z F, Sun Q X. Cloning, characterization, and functional analysis of TaWRKY44 gene from wheat. Acta Agron Sin, 2013, 39: 1944–1951 (in Chinese with English abstract)
[31] 田云, 卢向阳, 彭丽莎, 方俊. 植物WRKY转录因子结构特点及其生物学功能. 遗传, 2006, 28: 1607–1612
Tian Y, Lu X Y, Peng L S, Fang J. The structure and function of plant WRKY transcription factors. Hereditas(Beijing), 2006, 28: 1607–1612 (in Chinese)
[32] 江淑琼, 周守标, 刘坤, 程龙玲. 干旱胁迫对中国石蒜叶片形态和部分生理指标的影响. 北方园艺, 2010, (7):16–19
Jiang S Q, Zhou S B, Liu K, Chen L L. Effects of drought stress on morphology and partial physiological indexes of leaves in lycoris chinensis. Northern Hort, 2010, (7):16–19
[33] Tardieu F, Davies W J. Stomatal response to abscisic acid is a function of current plant water status. Plant Physiol, 1992, 98: 540–545
[34] Sze H, Li X, Palmgren M G. Energization of plant cell membranes by H+-pumping ATPases regulation and biosynthesis. Plant Cell, 1999, 11: 677–690
[35] Davies D D. The fine control of cytosolic pH. Physiol Plant, 1986, 67:702–706 |