[1]Li Y R, Yang L T. Sugarcane agriculture and sugar industry in China. Sugar Tech, 2015, 17: 1–8
[2]Wasinger V C, Cordwell S J, Cerpa-Poljak A, Yan J X, Gooley A A, Wilkins M R, Duncan M W, Harris R, Williams K L, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: ycoplasma genitalium. Electrophoresis, 1995, 16: 1090–1094
[3]Yang L, Lin H, Takahashi Y, Chen F, Walker M A, Civerolo E L. Proteomic analysis of grapevine stem in response to Xylella fastidiosa inoculation. Physiol Mol Plant Pathol, 2011, 75: 90–99
[4]Zhou G, Yang L T, Li Y R, Zou C L, Huang L P, Qiu L H, Huang X, Srivastava M K. Proteomic analysis of osmotic stress- responsive proteins in sugarcane leaves. Plant Mol Biol Rep, 2012, 30: 349–359
[5]Song X P, Huang X, Tian D D, Yang L T, Li Y R. Proteomic analysis of sugarcane seedling in response to Ustilago scitaminea infection. Life Sci J, 2013, 10: 3026–3035
[6]李素丽. 不同冷敏感型甘蔗品种对低温的响应机制. 广西大学博士学位论文, 广西南宁, 2011
Li S L. Response Mechanism of Different Cold Sensitive Sugar-cane Cultivars to Low Temperature Stress. PhD Dissertation of Guangxi University, Nanning, China, 2011 (in Chinese with Eng-lish abstract)
[7]黄杏. ABA提高甘蔗抗寒力的生理及分子机制研究. 广西大学博士学位论文, 广西南宁, 2012
Huang X. Study on Physiological and Molecular Mechanism of Cold Resistance Enhanced by ABA Application in Sugarcane. PhD Dissertation of Guangxi University, Nanning, China, 2012 (in Chinese with English abstract)
[8]谢晓娜. 宿根矮化病菌的分离培养、抗体的制备及其对甘蔗防御酶活性和蛋白质表达的影响. 广西大学博士学位论文, 广西南宁, 2014
Xie X N. Isolation and Preparation of Antiserum Against the Pathogen of Sugarcane Ratoon Stunting Disease and the Effects of the Pathogen on Defensive Enzymes Activity and Proteome in Sugarcane. PhD Dissertation of Guangxi University, Nanning, China, 2014 (in Chinese with English abstract)
[9]Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Benett J. Proteomic analysis of rice leaves during drought stress and re-covery. Proteomics, 2002, 2: 1131–1145
[10]Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Sta-menova M, Feller U. Drought stress effects on rubisco in wheat: changes in the rubisco large subunit. Acta Physiol Plant, 2009, 31: 1129–1138
[11]Xiao X, Yang F, Zhang S, Korpelainen H, Li C. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol Plant, 2009, 136: 150–168
[12]孙存华, 杜伟, 徐新娜, 陈湘玲, 张亚红. 干旱胁迫对藜叶片干旱诱导蛋白的影响. 干旱地区研究, 2009, 26: 372–376
Sun C H, Du W, Xu X N, Chen X L, Zhang Y H. Effect of drought stress on drought-induced protein in leaves of Cheno-podium album L. Arid Zone Res, 2009, 26: 372–376 (in Chinese with English abstract)
[13]Su Y C, Xu L P, Wang Z Q, Peng Q, Yang Y T, Chen Y, Que Y X. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. BMC Genom, 2016, 17: 800
[14]章玉婷, 周德群, 苏源, 余萍, 周晓罡, 姚春馨. 干旱胁迫条件下马铃薯耐旱品种宁蒗182叶片蛋白质组学分析. 遗传, 2013, 35: 666–672
Zhang Y T, Zhou D Q, Su Y, Yu P, Zhou X G, Yao C Q. Proteome analysis of potato drought resistance variety in Ninglang 182 leaves under drough stress. Hereditas (Beijing), 2013, 35: 666–672 (in Chinese with English abstract)
[15]韦汉文, 黄有总, 方良宝, 陈超君, 韩世健, 陆国盈, 余勇, 冉思贵. 引进甘蔗新品种对干旱胁迫的生理响应及抗旱性评判. 广西蔗糖, 2010, (1): 7–11
Wei H W, Huang Y Z, Fang L B, Chen C J, Han S J, Lu G Y, Yu Y, Ran S G. Physiological responses of introduced sugarcane varie-ties to drought stress and evaluation of drought resistance. Guangxi Sugarcane & Canesugar, 2010, (1): 7–11 (in Chinese with English abstract)
[16]檀小辉, 廖洁, 刘铭, 牛俊奇, 杨丽涛, 李杨瑞, 王爱勤. 广西28个区试甘蔗品种抗旱性分析. 安徽农业科学, 2011, 39: 12687–12690
Tan X H, Liao J, Liu M, Niu J Q, Yang L T, Li Y R, Wang A Q. Analysis of drought resistance of 28 sugarcane varieties in re-gional trials of Guangxi. J Anhui Agric Sci, 2011, 39: 12687–12690 (in Chinese with English abstract)
[17]朱理环, 邢永秀, 杨丽涛, 李杨瑞, 杨荣仲, 莫磊兴. 干旱胁迫对苗期甘蔗叶片水分和叶绿素荧光参数的影响. 安徽农业科学, 2010, 38: 12570−12573
Zhu L H, Xing Y X, Yang L T, Li Y R, Yang R Z, Mo L X. Effects of water stress on leaf water and chlorophyll fluorescence pa-rameters of sugarcane seedling. J Anhui Agric Sci, 2010, 38: 12570−12573 (in Chinese with English abstract)
[18]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of pro-tein-dye binding. Anal Biochem, 1976, 72: 248–254
[19]Hashimoto M, Komatsu S. Proteomics analysis of rice seedling during cold stress. Proteomics, 2007, 7: 1293–1302
[20]Kjellsen T D, Shiryaeva L, Schröder W P, Strimbeck G R. Pro-teomics of extreme freezing tolerance in Siberian spruce (Picea obovata). J Proteomics, 2010, 73: 965–975
[21]Degand H, Faber A M, Dauchot N, Mingeot D, Watillon B, Van Cutsem P, Morsomme P, Boutry M. Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation. Proteomics, 2009, 9: 2903–2907
[22]Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N. Comparative proteomic analysis provides new insight into chilling stress re-sponse in rice. Mol Cell Proteomics, 2006, 5: 484–496
[23]Cui S, Huang F, Wang J, Ma X, Cheng Y S, Liu J Y. A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005, 5: 3162–3172
[24]Kosova K, Vitamvas P, Prasil I T, Renaut J. Plant proteome changes under abiotic stress-contribution of proteomics studies to underetanding plant stress response. J Proteormcs, 2011, 74: 1301–1322
[25]Barreneche T, Bahrman N, Kremer A. Two dimensional gel electro-phoresis confirms the low level of genetic differentiation between Quercus robur and Quercus petraea. For Genet, 1996, 3: 89–92
[26]Shen S, Sharma A, Komatsu S. Characterization of proteins re-sponsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis. Biol Pharm Bull, 2003, 26: 129–136
[27]Hernandez J A, Ferrer M A, Jiménez A, Barceló A R, Sevilla F. Antioxidant systems and O2– / H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol, 2001, 127: 817–831
[28]Borsani O, Valpuesta V, Botella M A. Evidence for a role of sali-cylic acid in the oxidative damage generated by NaCl and os-motic stress in Arabidopsis seedlings. Plant Physiol, 2001, 126: 1024–1030
[29]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405–410
[30]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373–399
[31]Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot, 2002, 53: 1331–1341
[32]Brandalise M, Severino F E, Maluf M P, Maia I G. The promoter of a gene encoding an isoflavone reductase-like protein in coffee (Coffea arabica) drives a stress-responsive expression in leaves. Plant Cell Rep, 2009, 28: 1699–1708
[33]Kajikawa M, Hirai N, Hashimoto T. A PIP-family protein is re-quired for biosynthesis of tobacco alkaloids. Plant Mol Biol, 2009, 69: 287–298
[34]Tan B C, Chin C F, Liddell S, Alderson P. Proteomic analysis of callus development in Vanilla planifolia Andrews. Plant Mol Biol Rep, 2013, 31: 1220–1229
[35]Vierling E. The roles of heat shock proteins in plants. Annu Rev Plant Biol, 1991, 42: 579–620
[36]Ingvardsen C, Veierskov B. Ubiquitin and proteasome-dependent proteolysis in plants. Physiol Plant, 2001, 112: 451–459
[37]Maupin-Furlow J A, Humbard M A, Kirkland P A, Li W, Reuter C J. Wright A J, Zhou G. Proteasomes from structure to function: per-spectives from Archaea. Curr Top Dev Biol, 2006, 75: 125–169
[38]Semane B, Dupae J, Cuypers A, Noben J P, Tuomainen M, Ter-vahauta A, Kärenlampi S, Belleghem F, Smeets K, Vangronsveld J. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol, 2010, 167: 247–254
[39]Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S. Thiol-peptide level and pro-teomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot, 2007, 59: 381–392
[40]Sugiharto B, Ermawati N, Mori H, Sakakibara H. Identification and characterization of a gene encoding drought-inducible protein localizing in the bundle sheath cell of sugarcane. Plant Cell Physiol, 2002, 43: 350–354
[41]Desclos M, Dubousset L, Etienne P, Le Caherec F, Satoh H, Bonnefoy J, Ourry A, Avice J C. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water- soluble chlorophyll-binding protein in young leaves during ni-trogen remobilization induced by stressful conditions. Plant Physiol, 2008, 147: 1830–1844 |