欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1658-1666.

• 耕作栽培·生理生化 • 上一篇    下一篇

涝渍对Bt 棉棉蕾杀虫蛋白表达含量及氮代谢影响

李远1,李亚兵2,胡大鹏1,王俊1,衡丽1,张祥1,陈源1,陈德华1,*   

  1. 1 扬州大学江苏省作物遗传生理重点实验室, 江苏扬州 225009; 2 中国农业科学院棉花研究所棉花生物学国家重点实验室, 河南安阳455000
  • 收稿日期:2017-02-22 修回日期:2017-07-23 出版日期:2017-11-12 网络出版日期:2017-08-09
  • 基金资助:

    本研究由国家自然科学基金项目(31471435, 31301263, 31671613), 江苏省三新工程项目[SXGC(2014)317, (2016)320], 江苏省高等教育优势学科发展计划(PAPD)和中国农业科学院棉花研究所植棉技术标准化研究与示范团队项目(2016PCTS-1)资助。

Effects of Waterlogging on Bt Protein Content and Nitrogen Metabolism in Square of Bt Cotton

LI Yuan1, LI Ya-Bing2, HU Da-Peng1, WANG Jun1, HENG Li1, ZHANG Xiang1, CHEN Yuan1, CHEN De-Hua1,*   

  1. 1 Jiangsu Provincial Key Laboratory of Crops Genetics and Physiology / Yangzhou University, Yangzhou 225009, China; 2 State Key Laboratory of Cotton Biology / Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
  • Received:2017-02-22 Revised:2017-07-23 Published:2017-11-12 Published online:2017-08-09
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31471435, 31301263, 31671613), Jiangsu “Threeinnovation”Agricultural Project [SXGC(2014)317, (2016)320], the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Project of Planting Cotton Technology Standardization Research and Demonstration.

摘要:

以Bt棉常规种泗抗1号和杂交种泗抗3号为材料, 于盛蕾期设计不同程度涝渍(土壤持水量为最大持水量的90%、100%, 渍水2 cm)胁迫4 d以及土壤持水量为最大持水量90%逆境下持续胁迫24~120 h的试验, 探讨棉蕾中Bt杀虫蛋白表达量变化及相关氮代谢生理机制。结果表明, 土壤不同涝渍程度影响棉蕾Bt蛋白含量。土壤持水量为最大持水量的90%、100%和渍水2 cm处理胁迫后, 常规种泗抗1号棉蕾中Bt蛋白含量分别下降36.5%、42.1%和51.4%, 杂交种泗抗3号分别下降19.2%、57.2%和64.5%。90%的土壤持水量持续胁迫96 h使棉蕾Bt蛋白含量开始显著下降, 泗抗1号和泗抗3号分别下降20.8%和17.6%。随着胁迫时间延长下降幅度增大。不同涝渍程度或水渍持续胁迫条件下, 棉蕾中可溶性蛋白含量, 硝酸还原酶(NR)、谷氨酸草酰乙酸转氨酶(GOT)、谷氨酸丙酮酸转氨酶(GPT)、谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)活性下降, 游离性氨基酸含量, 肽酶、蛋白酶活性增加。说明涝渍逆境下, 棉蕾中蛋白质合成能力下降、分解能力增强, 引起可溶性蛋白包括Bt杀虫蛋白含量下降, 导致棉蕾抗虫性下降。

关键词: Bt cotton, Water logging, Insecticidal protein, Nitrogen metabolism

Abstract:

Using Bt cotton conventional cultivar Sikang 1 and hybrid Sikang 3 as test materials, the experiments of water stress at different levels (relative soil water capacity at 90%, 100%, and 2 cm waterlogging above the soil surface respectively) and 90% soil water capacity remained 24–120 hours were conducted to investigate the square Bt insecticidal protein expression and nitrogen metabolism in bud developmental stage. The soil waterlogging treatments with three levels reduced the square Bt insecticidal protein content by 36.5%, 42.1%, and 51.4% for conventional cultivar Sikang 1 and by 19.2%, 57.2%, and 64.5% for hybrid Sikang 3, respectively. The continuous stress of 96 h in the 90% soil water capacity treatment decreased the square Bt insecticidal protein content significantly, which was 20.8% for Sikang 1 and 17.6% for Sikang 3, the longer the stress sustained, the more the Bt toxin content declined. The soluble protein content, NR, GOT, GPT, GS, and GOGAT activities decreased, and the free amino acids content, peptidase and protease activities increased under different levels of soil waterlogging and continuous stress of 90% soil water capacity stress. Therefore, the reduced protein synthesis ability, and enhanced protein degradation ability may decrease the square soluble protein content including Bt insecticidal protein content, resulting in reduction of the square insect resistance.

Key words: Bt cotton, Water logging, Insecticidal protein, Nitrogen metabolism

[1] 郑继有. 对我国转基因抗虫棉品种选育的思考和建议. 中国棉花学会2007年年会论文汇编, 2007. pp 13–14
Zheng J Y. Consideration and suggestion on breeding of    transgenic Bt cotton varieties in China. In: Proceedings of the 2007 Annual Conference of China Cotton Association, 2007. pp 13–14 (in Chinese)
[2] James C. Preview: global status of commercialized biotech/GM crops. ISAAA Briefs, 2004, 32: 1–12
[3] 郭香墨, 范术丽, 王红梅, 严根土. 我国棉花育种技术的创新与成就. 棉花学报, 2007, 19: 323–330
Guo X M, Fan S L, Wang H M, Yan G T. Achievements of tech-nical innovation about cotton genetics and breeding in China. Cotton Sci, 2007, 19: 323–330 (in Chinese with English abstract)
[4] 夏敬源, 邹奎, 马志强, 夏文省, 柏长青. 国产转基因抗虫棉技术集成创新与推广应用. 中国棉花, 2006, 33(10): 2–5
Xia J Y, Zou K, Ma Z Q, Xia W S, Bai C Q. Domestic transgenic cotton technology integration innovation and application. China Cotton, 2006, 33(10): 2–5 (in Chinese)
[5] 魏艳丽, 黄玉杰, 李红梅, 孙红星, 杨合同. 棉花转基因技术研究. 山东科学, 2008, 21(3): 38–41
Wei Y L, Huang Y J, Li H M, Sun H X, Yang H T. A survey of cotton transgene technology. Shandong Sci, 2008, 21(3): 38–41 (in Chinese with English abstract)
[6] 李悦有, 翟黎芳, 卢川. 河北棉区的棉花生产现状及发展策略分析. 棉花学报, 2016, 38: 8–13
Li Y Y, Zhai L F, Lu C. Analysis of cotton production situation and development strategy in Hebei cotton area. Cotton Sci, 2016, 38: 8–13 (in Chinese with English abstract)
[7] James C. Global biotechnology / GM crops commercialization development trend in 2015. China Biotechnol, 2016, 36: 1–11
[8] 郑志明, 黄磊, 袁连卿, 孙玉德. 转基因抗虫棉的特性及病虫草害综合防治技术. 北京: 中国社会出版社, 2005. pp 231–235
Zheng Z M, Huang L, Yuan L Q, Sun Y D. The Characteristics of Transgenic Insect-resistant Cotton and Pests Integrated Control Techniques. Beijing: China Society Press, 2005. pp 231–235 (in Chinese)
[9] 张社梅. 国产转基因棉花科研与应用的经济分析. 中国农业科学院博士学位论文, 北京, 2007
Zhang S M. Economic Analysis on Chinese Domestic Genetically Modified Cotton R&D Investment and Application. PhD Disser-tation of Chinese Academy of Agricultural Sciences, Beijng, China, 2007 (in Chinese with English abstract)
[10] 温四民, 董合忠, 辛呈松. Bt棉抗虫性差异表达的研究进展. 河南农业科学, 2007, (1): 9–12
Wen S M, Dong H Z, Xin C S. Research progress on the differen-tial expression of insect resistance of Bt cotton. J Henan Agric Sci, 2007, (1): 9–12 (in Chinese)
[11] Jagger R. The company view. Aust Cotton Grower, 1997, (1): 26
[12] Kaiser J. Pest overwhelm Bt cotton crop. Science, 1996, 273: 423
[13] 王永慧, 陈建平, 蔡立旺, 张萼, 戚永奎. 气象因子对Bt棉抗虫性表达影响的研究进展. 安徽农业科学, 2011, 39: 20530–20531
Wang Y H, Chen J P, Cai L W, Zhang E, Qi Y K. Research pro-gress in effects of meteorological factors on pest resistance ex-pression of Bt cotton. J Anhui Agric Sci, 2011, 39: 20530–20531 (in Chinese with English abstract)
[14] 王家宝, 王留明, 沈法富, 张学坤, 杨静, 刘任重. 环境因素对转Bt基因棉Bt杀虫蛋白表达量的影响. 山东农业科学, 2000, (6): 4–6
Wang J B, Wang L M, Shen F F, Zhang X K, Yang J, Liu R Z. Effect of environment elements on Bt-protein content in trans-genic Bt cotton. Shandong Agric Sci, 2000, (6): 4–6 (in Chinese with English abstract)
[15] 吴敬音, 何小兰, 束春娥, 陈松, 傅春霞, 黄骏麒. 土壤淹水对Bt棉抗棉铃虫能力的影响. 江苏农业学报, 1997, 13(4): 231–233
Wu J Y, He X L, Su C E, Chen S, Fu C X, Huang J Q. Influence of waterlogging on the bollworm resistance of Bt cotton. Jiangsu J Agric Sci, 1997, 13(4): 231–233 (in Chinese with English abstract)
[16] 王留明, 王家宝, 沈法富, 张学坤, 刘任重. 渍涝与干旱对不同转Bt基因抗虫棉的影响. 棉花学报, 2001, 13: 87–90
Wang L M, Wang J B, Shen F F, Zhang X K, Liu R Z. Influences of waterlogging and drought on different transgenic Bt cotton cultivars. Cotton Sci, 2001, 13: 87–90 (in Chinese with English abstract)
[17] Mifin B J, Lea P J. The Biochemistry of Plants. New York: Aca-demic Press, 1980. pp 169–202
[18] 赵鹏, 何建国, 熊淑萍, 马新明. 氮素形态对专用小麦旗叶酶活性及籽粒蛋白质和产量的影响. 中国农业大学学报, 2010, 15(3): 29–34
Zhao P, He J G, Xiong S P, Ma X M. Studies on the effects of different nitrogen forms on enzyme activity in flag leaves in wheat and protein and yield of grain for specialized end-uses. J China Agric Univ, 2010, 15(3): 29–34 (in Chinese with English abstract)
[19] 阎桂萍, 马凤鸣, 李文华. 甜菜氨同化途径的研究. 东北农业大学学报, 1999, 30(4): 318–323
Yan G P, Ma F M, Li W H. Studies on the way of ammonia                                    assimilation in sugar beet. J Northeast Agric Univ, 1999, 30(4): 318–323 (in Chinese)
[20] Hallikeri S S, Halemani H L, Katageri I S, Patil B C, Patil V C, Palled Y B. Influence of sowing time and moisture regimes on cry protein concentration and related parameters of Bt-cotton. Karnataka J Agric Sci, 2009, 22: 995–1000
[21] Ian J R. Effect of genotype, edaphic, environmental conditions, and agronomic practices on CryIAc protein expression in trans-genic cotton. J Cotton Sci, 2006, 10: 252–262
[22] 王永慧, 陈建平, 蔡立旺, 张祥, 陈源, 陈德华. 温湿度处理对Bt棉杀虫蛋白表达的影响. 棉花学报, 2013, 25: 63–67
Wang Y H, Chen J P, Cai L W, Zhang X, Chen Y, Chen D H.               Effect of combination stress of temperature and humidity on in-secticidal protein expression of Bt transgenic cotton. Cotton Sci, 2013, 25: 63–67 (in Chinese with English abstract)
[23] 束春娥, 孙洪武, 孙以文, 柏立新, 黄骏麒, 李胜. 转基因棉Bt毒性表达的时空动态及对棉铃虫生存、繁殖的影响. 棉花学报, 1998, 10: 131–135
Shu C E, Sun H W, Sun Y W, Bai L X, Huang J Q, Li S. Toxic response of cotton bollworm to various parts of Bt-transgenic cotton in different growing stages. Acta Gossypii Sin, 1998, 10: 131–135 (in Chinese with English abstract)
[24] Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K. Effect of intro-ducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crops Res, 2004, 87: 1–9
[25] Stam M, Mol J N M, Kooter J M. The silence of genes in trans-genic plants. Ann Bot, 1997, 79: 3–12
[26] Finnegan E J, Liewellyn D J, Fitt G P. What’s happening to the expression of the insect protection in field-grown ingard cotton? In: 11th Australian Cotton Conference, 2002. pp 291–297
[27] Helen E H. Season-long monitoring of transgenic cotton plants development of an assay for the quantification of Bacillus thu¬ringiensis insecticidal crystal protein. In: 10th Australian Cotton Conference, 2000. pp 331–335
[28] Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K. The effect of high temperature on the insecticidal properties of Bt cotton. En-viron Exp Bot, 2005, 53: 333–342
[29] Zhang X, Ye G Y, Zhang L, Wang Y H, Chen Y, Chen D H. The im-pact of introducing the Bacillus thuringiensis gene into cotton on boll nitrogen metabolism. Environ Exp Bot, 2007, 61: 175–180
[30] 陈德华, 杨长琴, 陈源, 聂安全, 吴云康. 高温胁迫对Bt棉叶片杀虫蛋白表达量和氮代谢影响的研究. 棉花学报, 2003, 15: 288–292
Chen D H, Yang C Q, Chen Y, Nie A Q, Wu Y K. The effects of the high temperature stress on the leaf Bt protein content and ni-trogen metabolism of Bt cotton. Cotton Sci, 2003, 15: 288–292 (in Chinese with English abstract)
[31] 吕春花. 高温胁迫对转Bt基因棉生殖器官Bt杀虫蛋白表达量及氮代谢的影响. 扬州大学硕士学位论文, 江苏扬州, 2013
Lyu C H. The Effect of High Temperature on the Insecticidal Properties and Nitrogen Metabolism of Bt Cotton Reproductive Organ. MS Thesis of Yangzhou University, Yangzhou, China, 2013 (in Chinese with English abstract)

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!