欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1667-1676.doi: 10.3724/SP.J.1006.2017.01667

• 耕作栽培·生理生化 • 上一篇    下一篇

控释复合肥对麦套花生光系统II性能及产量和品质的调控效应

刘兆新,刘妍,刘婷如,何美娟,姚远,杨坚群,甄晓宇,栗鑫鑫,杨东清,李向东*   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室,山东泰安 271018
  • 收稿日期:2017-03-06 修回日期:2017-07-23 出版日期:2017-11-12 网络出版日期:2017-08-01
  • 通讯作者: 李向东, E-mail: lixdong@sdau.edu.cn, Tel: 0538-8241194
  • 基金资助:

    本研究由国家科技支撑计划项目(2014BAD11B04-2), 国家自然科学基金项目(30840056,31171496)和山东省现代农业体系花生创新团队首席专家专项(SDAIT-04-01)资助。

Effect of Controlled-Release Compound Fertilized on Photosystem II Performance, Yield and Quality of Intercropped Peanut with Wheat

LIU Zhao-Xin,LIU Yan,LIU Ting-Ru,HE Mei-Juan,YAO Yuan,YANG Jian-Qun,ZHEN Xiao-Yu,LI Xin-Xin,YANG Dong-Qing,LI Xing-Dong*   

  1. College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, China
  • Received:2017-03-06 Revised:2017-07-23 Published:2017-11-12 Published online:2017-08-01
  • Contact: 李向东, E-mail: lixdong@sdau.edu.cn, Tel: 0538-8241194
  • Supported by:

    This work was supported by the National Key Technology Support Program of China (2014BAD11B04-2), the National Nature Science Foundation of China (30840056, 31171496), and Shandong Modern Agricultural Technology & Industry System(SDAIT-04-01).

摘要:

以大花生品种606为材料,设置基肥∶拔节期∶始花期比例为35%∶35%∶30%,调查同比例的普通复合肥(JCF)和控释复合肥(JCRF)施用后麦套花生叶片光合性能及产量和品质变化,以期探明花生叶片光系统II性能对不同肥料类型的生理反应机制。结果表明,花生结荚后期,各处理叶面积指数(LAR)、叶绿素含量Chl)和净光合速率(Pn)均呈降低趋势;与JCF处理相比,施用控释复合肥显著增加了花生叶片Chl含量,提高了LAR和Pn,延缓了叶片衰老。JIP-test分析表明,施肥可以引起荧光诱导曲线(OJIP曲线)显著变化,其中K、J和I点的荧光强度值明显降低。JCRF处理显著提高叶片捕获的激子将电子传递到电子传递链中QA下游的其他电子受体的概率(Ψo)和以吸收光能为基础的性能指数(PIabs),降低K点的可变荧光FKFjFo振幅的比例(Wk)和J点的可变荧光Fj占振幅FoFp的比例(Vj),表明PSII反应中心电子传递链综合性能以及供体侧和受体侧的电子传递能力均明显提高,其中受体侧性能的改善大于供体侧。与普通复合肥处理相比较,控释复合肥处理的荚果产量和籽仁产量分别提高11.3%和15.2%,同时显著增加了花生籽仁蛋白质、脂肪和可溶性糖含量,提高了脂肪中油酸/亚油酸(O/L)的比值。因此,在等N-P2O5-K2O比例和等养分条件下,控释复合肥较普通复合肥可显著改善麦套花生叶片光合性能,有利于提高产量和改善品质。

关键词: 控释复合肥, 麦套花生, 光合特性, 产量品质

Abstract:

Peanut variety 606 was used to investigate photosynthetic characteristics, yield and quality of intercropped peanut with wheat, and to explore the mechanism of physiological responses of photosystemII to controlled-released compound fertilizer, which was 35% for base fertilizer, 35% applied at jointing stage and 30% applied at initial flower stage. The leaf area index (LAR), chlorophyll content(Chl) and net photosynthetic rate (Pn) were gradually reduced at the late growth stage of peanut. Application of the controlled-released compound fertilizerincreased Chl, decreased LAR and Pn, compared with that of common compound fertilizer. In JIP-test analyzing, the OJIP fluorescence induction curve was affected significantly by fertilization, and the fluorescence intensity of K, J, and I steps was significantly decreased. The probability of a trapped exciton moving an electron into the electron transport chain beyond QA(Ψo) and the performance index on absorption basis(PIabs) were significantly increased under applying controlled-released compound fertilization, while the relative variable fluorescence intensity at the K-step(Wk) and at the J-step(Vj) was reduced. The comprehensive performance of electron transport chain in PSII reaction center and the electron transport capacity both in the donor side and the receptor side were increased obviously, and the performance of the receptor side was greater than that of the donor side. Applying controlled-release compound fertilizers increased the pod yield and kernel yield by 11.3% and 15.2% respectively as compared with those of applying common compound fertilizers. While the controlled-released compound fertilizer treatment also increased the contents of protein, fat and soluble sugar in kernel, and increased the O/L ratio significantly. Therefore, Under the same application rates of N-P2O5-K2O, applying the controlled-released compound fertilizer can significantly improve the photosynthetic performance for improving yield and quality of peanut compared with applying the common compound fertilizer.

Key words: Controlled-release compound fertilized, Intercropped peanut with wheat, Photosynthetic characteristics, Yield and quality

[1]李向东, 王晓云, 张高英, 万勇善, 李军. 花生衰老的氮素调控. 中国农业科学, 2000, 33(5): 30–35
Li X D, Wang X Y, Zhang G Y, Wan Y S, Li J. Effect of nitrogen on peanut during process of senescence. Sci Agric Sin, 2000, 33(5): 30–35 (in Chinese)
[2]Giles I G. A compendium of reviews in biochemistry and molecular biology published in the first half of 1992. Intl J Biochem, 1992, 24: 1851–1833
[3]Lee H Y, Hong Y N, Chow W S. Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves. Planta, 2001, 212: 332–342
[4]Mǜller M, Li X P, Niyogi K K. Non-photochemical quenching: a response to excess light energy. Plant Physiol, 2001, 125: 1558–1566
[5]Foyer C H, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell & Environ, 2005, 28: 1056–1071
[6]金继运, 何萍. 氮钾营养对春玉米后期碳氮代谢与粒重形成的影响. 中国农业科学, 1999, 19(4): 55–62
Jin J Y, He P. Effect of N and K nutrition on post metabolism of carbon and nitrogen and grain weight formation in maize. Sci Agric Sin, 1999, 19(4): 55–62 (in Chinese with English abstract)
[7]韩晓日, 姜琳琳, 王帅, 战秀梅, 兰宇, 马宾. 不同施肥处理对春玉米穗位叶光合指标的影响. 沈阳农业大学学报, 2009, 40: 444–448
Han X R, Jiang L L, Wang S, Zhan X M, Lan Y, Ma B. Effect of fertilizer application on photosynthetic traits of spring maize. J Shenyang Agric Univ, 2009, 40: 444-448 (in Chinese with English abstract)
[8]张福锁, 米国华. 玉米氮效率遗传改良及其应用. 农业生物技术学报, 1997, (2): 112–117
Zhang F S, Mi G H. Advances in the genetic improvement of nitrogen efficiency in maize. J Agric Biotechnol, 1997, (2): 112–117 (in Chinese with English abstract)
[9]曹翠玲, 李生秀. 供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响. 植物学报, 2003, 20: 319–324
Cao C L, Li S X. Effect of nitrogen level on the photosynthetic rate, NR activity and the contents of nucleic acid of wheat leaf in the stage of reproduction. Chin Bull Bot, 2003, 20: 319–324 (in Chinese with English abstract)
[10]何萍, 金继运, 林葆, 王秀芳, 张宽. 不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究. 植物营养与肥料学报, 1998, 4: 123–130
He P, Jin J Y, Lin B, Wang X F, Zhang K. Dynamics of biomass and its components and models of nutrients absorption by spring maize under different nitrogen, phosphorous and potassium application rates. Plant Nutr Fert Sci, 1998, 4: 123–130 (in Chinese with English abstract)
[11]万书波. 中国花生栽培学. 上海:上海科学技术出版社, 2003. pp 380–390
Wan S B. Peanut Production in China. Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 380–390 (in Chinese)
[12]王艳华, 董元杰, 邱现奎, 胡国庆.控释肥对坡耕地花生生理特性、产量及品质的影响. 作物学报, 2010, 36: 1974–1980
Wang Y H, Dong Y J, Qiu X K, Hu G Q. Effect of controlled release fertilizer on physiological characteristics, yield and quality of peanut in slope field. Acta AgronSin, 2010, 36: 1974–1980 (in Chinese with English abstract)
[13]邱现奎, 董元杰, 史衍玺, 胡国庆, 王艳华. 控释肥对花生生理特性及产量、品质的影响. 水土保持学报, 2010, 24(2): 223–226
Qiu X K, Dong Y J, Shi Y X, Hu G Q, Wang Y H. Effect of control release fertilizers on physiological characteristics and yield, quality of peanut. J Soil & Water Conserv, 2010, 24(2): 223–226 (in Chinese with English abstract)
[14]张玉树, 丁洪, 卢春生, 李卫华, 陈磊. 控释肥料对花生产量、品质以及养分利用率的影响. 植物营养与肥料学报, 2007, 13: 700–706
Zhang Y S, Ding H, Lu C S, Li W H, Chen L. Effect of controlled release fertilizers on theyield and quality of peanut and nutrient use efficiency. Plant Nutr Fert Sci, 2007, 13: 700–706 (in Chinese with English abstract)
[15]杨吉顺, 李尚霞, 吴菊香, 张智猛, 樊宏. 控释肥对花生产量及干物质积累的影响. 山东农业科学, 2013, 45(10): 98–100
Yang J S, Li S X, Wu J X, Zhang Z M, Fan H. Effects of controlled-release fertilizer on peanut yield and dry matter accumulation. Shandong Agric Sci, 2013, 45(10): 98–100 (in Chinese with English abstract)
[16]张翔, 毛家伟, 司贤宗, 李亮, 李国平, 郭中义. 小麦—花生统筹施肥对花生产量、品质及土壤肥力的影响. 花生学报, 2016, 45(1): 24–28
Zhang X, Mao J W, Si X Z, Li L, Li G P, Guo Z Y. Effect of integrated fertilization on the yield and quality of peanut and soil fertility under wheat-peanut planting system. J Peanut Sci, 2016, 45(1): 24–28 (in Chinese with English abstract)
[17]周录英, 李向东, 汤笑, 林英杰, 李宗奉. 氮、磷、钾肥不同用量对花生生理特性及产量品质的影响. 应用生态学报, 2007, 18: 2468–2474
Zhou L Y, Li X D, Tang X, Lin Y J, Li Z F. Effects of different application amount of N, P, K fertilizers on physiological characteristics, yield and kernel quality of peanut. Chin J Appl Ecol, 2007, 18: 2468–2474 (in Chinese with English abstract)
[18]郑亚萍, 信彩云, 王才斌, 孙秀山, 杨伟强, 万书波. 磷肥对花生根系形态、生理特性及产量的影响. 植物生态学报, 2013, 37: 777–785
Zheng Y P, Xin C Y, Wang C B, Sun X S, Yang W Q, Wan S B. Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut(Arachis hypogaea). Chin J Plant Ecol, 2013, 37: 777–785
[19]董元杰, 万勇善, 张民,刘凤珍. 控释掺混肥对花生生育期间剖面土壤铵态氮和硝态氮含量变化的影响. 华北农学报,2008, 23(6): 203–207
Dong Y J, Wan Y S, Zhang M, Liu F Z. Effect of controlled release blend bulk fertilizers on the soil ammonium and nitrate nitrogen content during the growing season of peanut. Acta Agric Boreali-Sin, 2008, 23(6): 203–207 (in Chinese with English abstract)
[20]Arnon D I. Copper enzymes in isolated chloroplast, poly-phenol oxidase in Beta vulgaris. Plant Physiol, 1949, 24(1): 1–15
[21]何照范. 粮油籽粒品质及其分析技术. 北京: 中国农业出版社, 1985. pp 37–41
He Z F. Analysis Technique for Grain Quality of Cereals and Oils. Beijing: China Agriculture Press, 1985. pp 37–41( in Chinese)
[22]高俊凤. 植物生理学实验指导. 高等教育出版社, 2006. pp 144–147
Gao J F. Experimental Guidance for Plant Physiology. Beijing: Higher Education Press, 2006. pp 144–147( in Chinese)
[23]范晖. 花生脂肪酸快速测定法的研究. 山东农业大学学报(自然科学版), 1991, 22 : 413–416
Fan H. Study on methods for determination of fatty acid in peanut. J Shandong Agric Univ, 1991, 22: 413-416 (in Chinese)
[24]Schansker G, Srivastava A, Govindjee, Strasser R J. Characterization of the 820 nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol, 2003, 30: 785–796
[25]Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P, eds. Probing Photosynthesis: Mechanism, Regulation and Adaptation. London: Taylor & Francis Press, 2000, Chapter 25. pp 445–483
[26]Strasser R J, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee, eds. Advances in Photosynthesis and Respiration. Neth-erlands: KAP Press, 2004. pp 1–47
[27]Lawlor D W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Exp Bot, 2002, 53: 773–787
[28]赵斌, 董树亭, 张吉旺, 刘鹏. 控释肥对夏玉米产量和氮素积累与分配的影响. 作物学报, 2010, 36:1760–1768
Zhao B, Dong S T, Zhang J W, Liu P. Effects of controlled-release fertilizer on yield and nitrogen accumulation and distribution in summer maize. Acta AgronSin, 2010, 36: 1760–1768 (in Chinese with English abstract)
[29]李学刚, 宋宪亮, 孙学振, 陈二影, 张美玲, 赵庆龙. 控释氮肥对棉花叶片光合特性及产量的影响. 植物营养与肥料学报, 2010, 16: 656-662
Li X G, Song X L, Sun X Z, Chen E Y, Zhang M L, Zhao Q L. Effects of controlled release N fertilizer on photosynthetic characteristics and yield of cotton. Plant Nutr Fert Sci, 2010, 16: 656–662 (in Chinese with English abstract)
[30]Kaneta Y, Awasaki H, Murai Y. The non-tillage rice culture by single application of fertilizer in a nursery box with controlled-release fertilizer. J Sci Soil & Manure Jpn, 1994, 65: 385–391
[31]Force L, Critchley C, van Rensen J J. New fluorescence parameters for monitoring photosynthesis in plants. Photosynth Res, 2003, 78: 17–33
[32]李耕, 高辉远, 刘鹏, 杨吉顺, 董树亭, 张吉旺. 氮素对玉米灌浆期叶片光合性能的影响. 植物营养与肥料学报, 2010, 16: 536–542
Li G, Gao H Y, Liu P, Yang J S, Dong S T, Zhang J W. Effects of nitrogen fertilization on photosynthetic performance in maize leaf at grain filling stage. Plant NutrFert Sci, 2010, 16: 536–542 (in Chinese with English abstract)
[33]王帅, 韩晓日, 战秀梅, 杨劲峰, 刘轶飞, 王月. 不同氮肥水平下玉米光响应曲线模型的比较. 植物营养与肥料学报, 2014, 20: 1403–1412
Wang S, Han X R, Zhan X M, Yang J F, Liu Y F, Wang Y. Effect of nitrogenous fertilizer levels on photosynthetic functions of maize ear leaves at grain filling stage. Plant Nutr Fert Sci, 2014, 20: 1403–1412 (in Chinese with English abstract)
[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[4] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[5] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[6] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[7] 杜进勇,柴强,王一帆,范虹,胡发龙,殷文,李登业. 地上地下互作强度对小麦间作玉米光合特性的影响[J]. 作物学报, 2019, 45(9): 1398-1406.
[8] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[9] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[10] 任永福,陈国鹏,蒲甜,陈诚,曾瑾汐,彭霄,马艳玮,杨文钰,王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应[J]. 作物学报, 2019, 45(5): 728-739.
[11] 鱼海跃,闫岩,张钰石,张明才,李召虎. 不同灌溉条件下冠菌素对大豆光合特性与产量的调控效应[J]. 作物学报, 2019, 45(12): 1851-1858.
[12] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
[13] 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874.
[14] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性[J]. 作物学报, 2018, 44(03): 414-422.
[15] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!