欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 728-739.doi: 10.3724/SP.J.1006.2019.83040

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应

任永福,陈国鹏,蒲甜,陈诚,曾瑾汐,彭霄,马艳玮,杨文钰,王小春()   

  1. 四川农业大学农学院 / 农业部西南作物生理生态与耕作重点实验室 / 作物生理生态及栽培四川省重点实验室, 四川成都 611130
  • 收稿日期:2018-05-01 接受日期:2019-01-12 出版日期:2019-05-12 网络出版日期:2019-02-19
  • 通讯作者: 王小春
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300109);四川省育种攻关项目(2016NYZ0051-2);成都市农业技术成果应用示范项目(2015-NY01-00100-NC)

Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system

Yong-Fu REN,Guo-Peng CHEN,Tian PU,Cheng CHEN,Jin-Xi ZENG,Xiao PENG,Yan-Wei MA,Wen-Yu YANG,Xiao-Chun WANG()   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture / Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
  • Received:2018-05-01 Accepted:2019-01-12 Published:2019-05-12 Published online:2019-02-19
  • Contact: Xiao-Chun WANG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300109);the Breeding Research Project of Sichuan(2016NYZ0051-2);the Agricultural Technology Achievement Demonstration Project of Chengdu(2015-NY01-00100-NC)

摘要:

玉米-大豆带状套作模式下, 宽窄行种植玉米, 窄行叶片存在着明显的光限制现象。采用低(A1: 众望玉18)、中(A2: 川单418)、高(A3: 荣玉1210)光效玉米品种, 玉米-大豆带状套作种植模式, 带宽固定为2 m, 每带种植2行玉米2行大豆, 设置大豆行距40 cm和玉米不同的窄行行距(B1: 20 cm; B2: 40 cm; B3: 单作)。探究套作高光效玉米窄行穂位叶在不同窄行光胁迫下的光合指标差异。结果表明, 与低光效和中光效品种玉米相比, 套作常规行距(40 cm)下, 高光效玉米品种(荣玉1210)窄行穗位叶光合速率、PEPCase活性分别显著高出46.9%、230.1%和11.8%、13.98%; 对弱光(10:00前、16:00后)的利用效率及叶绿体结构完整程度较高, 而叶绿素初始荧光(Fo)和最大荧光(Fm)较低; 随套作窄行行距减小, 3类品种玉米窄行穗位叶光合速率、光合作用关键酶活性均呈下降趋势, 叶绿素初始荧光(Fo)、最大荧光(Fm)及有效光化学量子产量(Fv'/Fm')均呈现不同程度的升高, 但均以套作高光效玉米变化幅度最小。套作高光效玉米在套作环境中窄行穗位叶的光合速率、光合作用关键酶活性、产量与单作差异均未达显著水平, 而低光效玉米和中光效玉米套作与单作相比, 光合速率、PEPCase活性显著降低28.9%、24.2%和7.4%、5.5%。因此, 不同玉米品种适应套作窄行光胁迫的能力差异显著, 套作高光效玉米(荣玉1210)在套作条件下仍具有相对理想的光合生理指标, 这为其适应套作光环境并获得高产提供了理论依据。

关键词: 玉米-大豆带状套作, 套作高光效, 穂位叶, 弱光胁迫, 光合特性

Abstract:

The photosynthesis of maize is inhibited in narrow row under maize-soybean relay strip intercropping system. In order to explore the internal mechanisms of photosynthesis characteristics responding to low light stress in ear leaf of intercropped maize cultivars with high photosynthetic efficiency, the low (A1: Zhongwangyu 18), middle (A2: Chuandan 418), and high (A3: Rongyu 1210) photosynthetic efficiency maize varieties were grown in maize-soybean strip intercropping system (two rows of maize intercropped with two rows of soybean) with different narrow spaces (B1: 20 cm; B2: 40 cm; B3: monoculture). The photosynthetic rate and PEPCase activity of “Rongyu 1210” were significantly higher than those of “Zhongwangyu 18” and “Chuandan 418”, respectively under the conventional row spacing (40 cm) and low light intensity conditions (before 10 a.m., after 4 p.m.). Additionally, “Rongyu 1210” had more complete chloroplast structure, which might result in lower initial fluorescence (Fo) and maximum fluorescence (Fm) of chlorophyll compared with “Zhongwangyu 18” and “Chuandan 418”. The Pn and activities of key enzymes decreased, but the initial fluorescence (Fo), maximum fluorescence (Fm) and effective photochemical quantum yield (Fv'/Fm') of chlorophyll increased with the decreasing narrow row spacing, Interestingly, the above indexes of “Rongyu 1210” were stable under the variable light environment. The photosynthetic rate, photosynthetic key enzyme activities, and yield of “Rongyu 1210” between monoculture and intercropping were not significantly different. However, the photosynthetic rate and PEPCase activity of “Zhongwangyu 18” and “Chuandan 418” in intercropping decreased by 28.9%, 24.2% and 7.4%, 5.5% compared with that in monoculture, respectively. In conclusion, the response of maize varieties to shade conditions in narrow row under intercropping system is different. Rongyu 1210, with a positive responding, that has better physiological indexes in photosynthesis than the other two maize varieties in the intercropping system. These results provide a theoretical explanation for excellent adaptability to the lower light environment and high yield in Rongyu 1210 under maize-soybean intercropping strip system.

Key words: maize-soybean strip intercropping, high photosynthetic efficiency, ear leaves, low light stress, photosynthetic characteristics

图1

田间种植及光分布示意图 MM代表单作。"

图2

不同处理对玉米窄行穂位叶光合作用参数的影响 MM代表单作。同一组数据中标以不同小写字母表示处理间在P < 0.05水平差异显著。"

图3

不同处理对玉米窄行穂位叶光合作用速率日变化的影响 MM代表单作。"

图4

不同处理对玉米窄行穂位叶光合作用关键酶的活性的影响 MM代表单作。同一组数据中标以不同小写字母表示处理间在P < 0.05水平差异显著。"

表1

不同处理对玉米窄行穂位叶叶绿素荧光参数的影响"

品种
Variety
行距
Row
spacing
Fo Fm Fv/Fm Fv′/Fm
抽雄期
Tasseling stage
灌浆期
Filling stage
抽雄期
Tasseling stage
灌浆期
Filling
stage
抽雄期
Tasseling stage
灌浆期
Filling stage
抽雄期
Tasseling stage
灌浆期
Filling stage
众望玉18 20 cm 3788.00 a 3438.00 b 19501.00 a 16201.00 a 0.76 c 0.77 c 0.13 a 0.14 b
Zhongwangyu 18 40 cm 2595.00 d 3370.00 c 13788.00 e 15819.00 b 0.78 ab 0.79 b 0.12 ab 0.13 bc
单作MM 2161.00 e 2600.00 e 12092.00 f 13566.00 d 0.79 a 0.81 a 0.10 c 0.12 c
川单418 20 cm 3527.00 b 3635.00 a 17138.00 b 15016.00 b 0.76 c 0.75 d 0.13 a 0.12 c
Chuandan 418 40 cm 3085.00 d 3326.00 c 16187.00 c 14527.00 c 0.77 b 0.76 cd 0.12 ab 0.12 c
单作MM 2345.00 e 2578.00 e 12284.00 f 12310.00 e 0.78 ab 0.79 b 0.12 ab 0.11 d
荣玉1210 20 cm 3481.00 b 2986.00 d 17400.00 b 14413.00 c 0.76 c 0.78 bc 0.11 bc 0.15 a
Rongyu 1210 40 cm 3272.00 c 2775.00 e 16816.00 c 13380.00 d 0.77 b 0.79 b 0.11 bc 0.14 b
单作MM 2964.00 d 1888.00 f 15585.00 d 10094.00 f 0.77 b 0.80 ab 0.10 c 0.12 c
众望玉18-avg. Zhongwangyu 18-avg. 2848.00 c 3136.00 a 15127.00 b 15195.33 a 0.78 a 0.79 a 0.12 a 0.13 a
川单418-avg. Chuandan 418-avg. 3052.33 b 3179.66 a 15203.00 b 13951.00 b 0.77 b 0.77 b 0.12 a 0.12 b
荣玉1210-avg. Rongyu 1210-avg. 3239.00 a 2549.66 b 16600.33 a 12629.00 b 0.77 b 0.79 a 0.11 b 0.13 a
20 cm-avg. 3598.66 a 3353.00 a 18013.00 a 15210.00 a 0.77 c 0.77 c 0.12 a 0.14 a
40 cm-avg. 3050.66 b 3157.00 b 15597.00 b 14575.33 b 0.78 b 0.78 b 0.12 a 0.13 b
MM-avg. 2490.00 c 2355.33 c 13320.33 c 11990.00 c 0.79 a 0.80 a 0.11 b 0.11 c
FF-value
品种 Varieties (V) 1.43* 2.02 0.99 2.36 5.21 4.14 2.23 4.02*
行距 Row spacing (RS) 4.07* 1.14 3.69 1.81 5.96* 0.88* 2.12 0.37*
品种×行距 V×RS 3.01* 1.50 2.61 1.65 4.70 2.18 2.17 1.83*

表2

不同处理对玉米窄行穂位叶叶绿体超微结构的影响"

品种
Variety
行距
Row spacing
叶绿体长度Chloroplast length (μm) 叶绿体宽度Chloroplast width (μm) 基粒厚度
Grains thickness (μm)
淀粉颗粒数
Starch granule
嗜锇颗粒数
Osmiophilic
particle
众望玉18 20 cm 7.12 bc 3.33 a 0.73 a 3.33 a 3.67 a
Zhongwangyu 18 40 cm 7.12 bc 3.10 b 0.72 ab 2.67 ab 3.33 a
单作MM 7.00 d 3.09 bc 0.69 b 2.00 b 1.33 bc
川单418 20 cm 7.13 b 3.26 ab 0.73 a 2.33 ab 2.33 b
Chuandan 418 40 cm 7.03 c 3.06 bc 0.68 bc 1.67 bc 1.33 bc
单作MM 6.98 e 3.06 bc 0.63 cd 1.33 bc 0.33 c
荣玉1210 20 cm 7.34 a 3.06 bc 0.65 c 1.00 c 1.00 cd
Rongyu 1210 40 cm 7.28 ab 2.99 d 0.61 d 0 d 0 d
单作MM 7.25 ab 2.98 d 0.61 d 0 d 0 d
FF-value
品种 Varieties (V) 55.28** 8.97* 16.44* 133.42** 16.66*
行距 Row pacing (RS) 11.48* 12.23* 7.18* 31.18** 8.79*
品种×行距 V×RS 0.07 0.11 0.95 0.59 9.09**

图5

透射电镜下的叶绿体超微结构 CHL: 叶绿体; GT: 基粒类囊体; CCHL: 紊乱的基粒类囊体; SG淀粉粒; OG: 嗜锇颗粒; GL: 基粒片层; SL: 基质片层。"

图6

不同处理对玉米产量的影响 MM代表单作。同一组数据中标以不同小写字母表示处理间在P < 0.05水平差异显著。"

表3

不同处理对玉米产量构成因素的影响"

品种
Variety
行距
Row
spacing
2015年 2016年
穗粒数
Grain number
per ear
千粒重
1000-kernel
weight (g)
穗数
Ear number
(×104 hm-2)
穗粒数
Grain number
per ear
千粒重
1000-kernel
weight (g)
穗数
Ear number
(×104 hm-2)
众望玉18 20 cm 406.20 e 290.00 b 49764.30 b 429.12 d 324.04 a 50330.00 e
Zhongwangyu 18 40 cm 449.30 d 294.30 b 50357.10 b 420.80 d 316.20 b 54000.00 d
单作MM 507.20 b 289.10 b 57142.90 a 519.66 b 309.64 c 56000.00 c
川单418 20 cm 347.60 f 300.50 b 49521.40 b 459.47 c 263.06 e 54000.00 d
Chuandan 418 40 cm 468.70 c 292.60 b 57732.12 a 527.37 b 256.00 e 57330.00 b
单作MM 479.00 c 308.00 a 58992.90 a 588.85 a 255.46 e 59330.00 a
荣玉1210 20 cm 452.00 d 295.70 b 49764.30 b 394.54 e 294.60 d 56660.00 c
Rongyu 1210 40 cm 563.80 a 294.00 b 55512.25 ab 442.91 d 305.86 c 57660.00 b
单作MM 588.10 a 295.40 b 56664.30 a 472.68 c 310.20 c 57660.00 b
众望玉18-avg. Zhongwangyu 18-avg. 454.23 b 291.13 a 52421.43 b 456.52 b 316.62 a 53443.33 c
川单418-avg. Chuandan 418-avg. 431.76 b 300.36 a 55415.47 a 525.23 a 258.17 c 56886.66 b
荣玉1210-avg. Rongyu 1210-avg. 534.63 a 295.03 a 53980.28 a 436.71 c 303.55 b 57326.66 a
20 cm-avg. 401.93 c 295.40 a 49683.33 c 427.71 c 293.90 a 53663.33 c
40 cm-avg. 493.93 b 293.63 a 54533.82 b 463.69 b 292.68 a 56330.00 b
MM-avg. 524.76 a 297.50 a 57600.03 a 527.06 a 291.76 a 57663.33 a
FF-value
品种 Varieties (V) 25.78** 185.89** 1.32** 16.72** 66.00** 5.51**
行距 Row spacing (RS) 24.35** 3.49** 38.66* 27.18** 3.55 4.59*
品种×行距 V×RS 24.92** 76.45* 23.72** 1.63 2.00 0.72

表4

光合参数之间及其与产量的相关关系"

光合速率
Photosyn-
thetic rate
气孔导度
Stomatal
conductance
胞间CO2浓度
Intercellular CO2 concentration
蒸腾速率
Transpiration rate
穂粒数
Grain number per ear
千粒重
1000-kernel weight
穗数
Ear number
(×104 hm-2)
产量
Yield
Photosynthetic rate 1.00 0.99** -0.80** 0.90** 0.54* 0.39 0.53* 0.62**
Stomatal conductance 1.00 -0.82** 0.92** 0.58* 0.37 0.54* 0.65**
Intercellular CO2 concentration 1.00 -0.97** -0.74** -0.24 -0.47 -0.73**
Transpiration rate 1.00 0.65** 0.27 0.51* 0.69**
Grain number per ear 1.00 -0.15 0.67** 0.95**
1000-kernel weight 1.00 0.18 0.05
Ear number (×104 hm-2) 1.00 0.85**
Yield 1.00
[1] 高仁才, 杨峰, 廖敦平, 苏本营, 崔亮, 邓传蓉, 杨文钰 . 行距配置对套作大豆冠层光环境及其形态特征和产量的影响. 大豆科学, 2015,34:611-615.
Gao R C, Yang F, Liao D P, Su B Y, Cui L, Deng C R, Yang W Y . Effects of different row spacing of maize on light environment, morphological characteristics and yield of soybeans in a relay intercropping system. Soybean Sci, 2015,34:611-615 (in Chinese with English abstract).
[2] Du J B, Han T F, Gai J Y, Yong T W, Sun X, Wang X C, Yang F, Liu J, Shu K, Liu W G, Yang W Y . Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. J Intergr Agric, 2018,17:747-754.
doi: 10.1016/S2095-3119(17)61789-1
[3] 张霞 . 玉米-大豆带状套作的物质产出、养分积累及经济效益研究. 四川农业大学硕士学位论文. 四川成都, 2014.
Zhang X . Study on Material Production, Nutrient Accumulation and Economic Benefit in Maize-soybean Relay Strip Intercropping System . MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2014 (in Chinese with English abstract).
[4] Long S P, Zhu X, Naidu S L, Ort D R . Can improvement in photosynthesis increase crop yields. Plant Cell Environ, 2006,29:315-330.
doi: 10.1111/pce.2006.29.issue-3
[5] Zhu X G, Long S P, Ort D R . What is the maximum efficiency with which photosynthesis can convert solar energy into biomass. Curr Opin Biotechnol, 2008,19:153.
doi: 10.1016/j.copbio.2008.02.004
[6] 陈国鹏, 王小春, 蒲甜, 曾红, 陈诚, 彭霄, 丁国辉, 王锐, 杨文钰 . 玉米-大豆带状套作中田间小气候与群体产量的关系. 浙江农业学报, 2016,28:1812-1821.
Chen G P, Wang X C, Pu T, Zeng H, Chen C, Peng X, Ding G H, Wang R, Yang W Y . Relationship of field microclimate and population yield in maize-soybean relay strip intercropping system. Acta Agric Zhejiangensis, 2016,28:1812-1821 (in Chinese with English abstract).
[7] 蒲甜, 张群, 陈国鹏, 陈诚, 曾红, 彭霄, 杨文钰, 王小春 . 行距对玉米-大豆套作体系中玉米产量及干物质积累与分配的影. 浙江农业学报, 2016,28:1277-1286.
Pu T, Zhang Q, Chen G P, Chen C, Zeng H, Peng X, Yang W Y, Wang X C . Effects of row spacing on yield, dry matter accumulation and partitioning of maize in maize soybean relay strip intercropping system. Acta Agric Zhejiangensis, 2016,28:1277-1286 (in Chinese with English abstract).
[8] 张群 . 宽窄行配置对带状套作玉米光合特性及产量的影响. 四川农业大学硕士学位论文, 四川成都, 2014.
Zhang Q . Effects of Wide-narrow Row spacing on Photosynthetic Characteristics and Yield of Maize in the Strip Intercropping. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2014 (in Chinese with English abstract).
[9] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋 . 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010,36:1226-1233.
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F . Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010,36:1226-1235 (in Chinese with English abstract).
[10] 宁堂原, 焦念元, 赵春, 邵国庆, 尉晶, 金福深, 李增嘉 . 不同品种春夏玉米套作模式中夏玉米光合特性与产量的关系. 中国生态农业学报, 2009,17:459-464.
Ning T Y, Jiao N Y, Zhao C, Shao G Q, Wei J, Jin F S, Li Z J . Effect of intercropping summer and spring maize on photosynthesis and yield of summer maize. Chin J Eco-Agric, 2009,17:459-464 (in Chinese with English abstract).
[11] 赵秀琴, 赵明, 肖俊涛, 张文绪, 关东明, 王美云, 陆军, 臧宁 . 栽野稻远缘杂交高光效后代及其亲本叶片的气孔特性. 作物学报, 2003,29:216-221.
Zhao X Q, Zhao M, Xiao J T, Zhang W X, Guan D M, Wang M Y, Lu J, Zang N . Stomata characteristics of leaves of high-photosynthetic efficiency progenies from a cross between O. sativa and O. rufipogon and their parents. Acta Agron Sin, 2003,29:216-221 (in Chinese with English abstract).
[12] 王强, 张其德, 卢从明, 匡廷云, 李成荃 . 超高产杂交稻不同生育期的光合色素含量、净光合速率和水分利用效率. 植物生态学报, 2002,26:647-651.
Wang Q, Zhang Q D, Lu C M, Kuang Y Y, Li C Q . Pigments content, net photosynthesis rate and water use efficiency of two super high- yield rice hybrids at different developmental stages. Acta Ecol Sin, 2002,26:647-651 (in Chinese with English abstract).
[13] Andrade F H, Calviño P, Cirilo A, Barbieri P . Yield responses to narrow rows depend on increased radiation interception. Agron J, 2002,94:975-980.
doi: 10.2134/agronj2002.0975
[14] Retasánchez D G, Fowler J L . Canopy light environment and yield of narrow-row cotton as affected by canopy architecture. Agron J, 2002,94:1317-1323.
doi: 10.2134/agronj2002.1317
[15] 武志海, 张治安, 陈展宇, 徐克章 . 大垄双行种植玉米群体冠层结构及光合特性的解析. 玉米科学, 2005,13(4):62-65.
Wu Z H, Zhang Z A, Chen Z Y, Xu K Z . Researched on characteristics of canopy structure and photosynthetic characteristic of maize planting in double lines at one width ridge. Maize Sci, 2005,13(4):62-65 (in Chinese with English abstract).
[16] 王敬亚, 齐华, 梁熠, 王晓波, 吴亚男, 白向历, 刘明, 孟显华, 许晶 . 种植方式对春玉米光合特性、干物质积累及产量的影响. 玉米科学, 2009,17(5):113-115.
Wang J Y, Hua Q I, Liang Y, Wang X B, Wu Y N, Bai X L, Liu M, Meng X H, Xu J . Effects of different planting patterns on the photosynthesis capacity dry matter accumulation and yield of spring maize. Maize Sci, 2009,17(5):113-115 (in Chinese with English abstract).
[17] Lilley R M, Walker D A . The reduction of 3-phosphoglycerate by reconstituted chloroplasts and by chloroplast extracts. Biochi. Biophys, 1974,368:269-278.
[18] 施教耐, 吴敏贤, 查静娟 . 植物磷酸烯醇式丙酮酸羧化酶的研究. PEP羧化酶同功酶的分离和变构特性的比较. 植物生理学报, 1979, ( 3):44-54.
Shi J N, Wu M X, Cha J J . Studies on plant phosphoenolpyruvate carboxylase. Separtion and properties of PEP carboxylase isoenzymes.Acta Phytophysiol Sin, 1979, ( 3):44-54 (in Chinese with English abstract).
[19] Arnozis P A, Nelemans J A, Findenegg G R . Phosphoenolpyruvate carboxylase activity in plants grown with either NO3 - or NH4 + as inorganic nitrogen source . J Plant Physiol, 1988,132:23-27.
doi: 10.1016/S0176-1617(88)80177-9
[20] 吕丽华, 王璞, 易镇邪, 魏凤桐, 刘明 . 密度对夏玉米品种光合特性和产量性状的影响. 玉米科学, 2007,15(2):79-81.
Lyu L H, Wang P, Yi Z X, Wei F T, Liu M . Effects of plant density on photosynthetic character and yield trait in summer corn. Maize Sci, 2007,15(2):79-81 (in Chinese with English abstract).
[21] 满为群, 杜维广, 张桂茹, 栾晓燕, 戈巧英, 郝乃斌, 陈怡 . 高光效大豆品种光合作用的日变化. 中国农业科学, 2002,35:860-862.
Man W Q, Du W G, Zhang G R, Luan X Y, Ge Q Y, Hao N B, Chen Y . Photosynthetic diurnal variation of soybean cultivars high photosynthetic efficiency. Sci Agric Sin, 2002,35:860-862 (in Chinese with English abstract).
[22] 满为群, 杜维广, 张桂茹, 李卫华, 栾晓燕, 戈巧英, 郝乃斌 . 高光效大豆几项光合生理指标的研究. 作物学报, 2003,29:697-700.
Man W Q, Du W G, Zhang G R , Li W H Luan X Y, Ge Q Y, Hao N B . Photosynthetic characteristics of soybean cultivars with high photosynthetic efficiency. Acta Agron Sin, 2003,29:697-700 (in Chinese with English abstract).
[23] 时向东, 蔡恒, 焦枫, 时映, 孙家利 . 光质对作物生长发育影响研究进展. 中国农学通报, 2008,24:226-230.
Shi X D, Cai H, Jiao F , Shi Y. Sun J L . Research advances in effects of light qualities on crop growth and development. Chin Agric Sci Bull, 2008,24:226-230 (in Chinese with English abstract).
[24] 崔海岩, 靳立斌, 李波, 赵斌, 董树亭, 刘鹏, 张吉旺 . 大田遮阴对夏玉米光合特性和叶黄素循环的影响. 作物学报, 2013,39:478-485.
Cui H Y, Jin L B, Li B, Zhao B, Dong S T, Liu P, Zhang J W . Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field. Acta Agron Sin, 2013,39:478-485 (in Chinese with English abstract).
[25] Liu X, Rahmana T, Song C, Yang F, Sua B, Cuia L, Bua W Z, Yang W Y . Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Res, 2018,224:91-101.
doi: 10.1016/j.fcr.2018.05.010
[26] Gou F, Ittersum M K V, Couëdel A, Zhang Y, Wang Y, Putten, P, Zhang L, Wopke V D W. Intercropping with wheat lowers nutrient uptake and biomass accumulation of maize, but increases photosynthetic rate of the ear leaf. Aob Plants, 2018, 10(1): ply010.
[27] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏 . 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007,33:216-222.
Zhang J W, Dong S T, Wang K J, Hu C H, Liu P . Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agron Sin, 2007,33:216-222 (in Chinese with English abstract).
[28] 贾士芳, 董树亭, 王空军, 张吉旺, 刘鹏 . 弱光胁迫对玉米产量及光合特性的影响. 应用生态学报, 2007,18:2456-2461.
Jia S F, Dong S T, Wang K J, Zhang J W, Liu P . Effects of weak light stress on grain yield and photosynthetic traits of maize. Chin J Appl Ecol, 2007,18:2456-2461 (in Chinese with English abstract).
[29] 李植, 秦向阳, 王晓光, 李兴涛, 王建辉, 曹敏建 . 大豆/玉米间作对大豆叶片光合特性和叶绿素荧光动力学参数的影响. 大豆科学, 2010,29:808-811.
Li Z, Qin X Y, Wang X G, Li X T, Wang J H, Cao M J . Effect of intercropping with maize on photosynthesis and chlorophyll fluorescence parameters of soybean. Soybean Sci, 2010,29:808-811 (in Chinese with English abstract).
[30] 杜成凤, 李潮海, 刘天学, 赵亚丽 . 遮荫对两个基因型玉米叶片解剖结构及光合特性的影响. 生态学报, 2011,31:6633-6640.
Du C F, Li C H, Liu T X, Zhao Y L . Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes. Acta Ecol Sin, 2011,31:6633-6640 (in Chinese with English abstract).
[31] 沈允钢 . 动态光合作用. 北京: 科学出版社, 1998. p 127.
Shen Y G . Dynamic Photosynthesis. Beijing: Science Press, 1998. p 127 (in Chinese).
[32] 余叔文, 汤章城 . 植物生理与分子生物学(第2版). 北京: 科学出版社, 1998. p 68.
Yu S W, Tang Z C. Plant Physiology and Molecular Biology, 2nd edn. Beijing: Science Press, 1998. p 68 (in Chinese)
[33] 李潮海, 栾丽敏, 王群, 李宁, 赵亚丽 . 苗期遮光及光照转换对不同玉米杂交种光合效率的影响. 作物学报, 2005,31:381-385.
Li C H, Luan L M, Wang Q, Li N, Zhao Y L . Effects of seedling shading and light intensity transfer on photosynthetic efficiency of different maize hybrids. Acta Agron Sin, 2005,31:381-385 (in Chinese with English abstract).
[34] 牟会荣, 姜东, 戴廷波, 荆奇, 曹卫星 . 遮荫对小麦旗叶光合及叶绿素荧光特性的影响. 中国农业科学, 2008,41:599-606.
Mu H R, Jiang D, Dai T B, Jing Q, Cao W X . Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaves. Sci Agric Sin, 2008,41:599-606 (in Chinese with English abstract).
[35] 魏珉, 邢禹贤, 王秀峰, 马红 . CO2加富对黄瓜叶片显微和亚显微结构的影响. 园艺学报, 2002,29:30-34.
Wei M, Xing Y X, Wang X F, Ma H . Effects of CO2 enrichment on the microstructure and ultrastructure of leaves in cucumber. Acta Hortic Sin, 2002,29:30-34 (in Chinese with English abstract).
[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[4] 罗凯, 谢琛, 汪锦, 王甜, 何舜, 雍太文, 杨文钰. 外源喷施植物生长调节剂对套作大豆碳氮代谢和花荚脱落的影响[J]. 作物学报, 2021, 47(4): 752-760.
[5] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[6] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[7] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[8] 杜进勇,柴强,王一帆,范虹,胡发龙,殷文,李登业. 地上地下互作强度对小麦间作玉米光合特性的影响[J]. 作物学报, 2019, 45(9): 1398-1406.
[9] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[10] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[11] 鱼海跃,闫岩,张钰石,张明才,李召虎. 不同灌溉条件下冠菌素对大豆光合特性与产量的调控效应[J]. 作物学报, 2019, 45(12): 1851-1858.
[12] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
[13] 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874.
[14] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性[J]. 作物学报, 2018, 44(03): 414-422.
[15] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!