欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1650-1657.doi: 10.3724/SP.J.1006.2017.01650

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用染色体片段代换系定位水稻叶片形态性状QTL

周勇,陶亚军,姚  锐,李  畅,谭文琛,裔传灯,龚志云,梁国华*   

  1. 扬州大学农学院植物功能基因组学教育部重点实验室 / 江苏省粮食作物现代产业技术协同创新中心,江苏扬州225009
  • 收稿日期:2017-02-06 修回日期:2017-05-10 出版日期:2017-11-12 网络出版日期:2017-05-06
  • 通讯作者: 梁国华, E-mail: ricegb@yzu.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2013CBA01405),国家自然科学基金项目(31471458),江苏省重点研发计划(BE2015341),扬州市农业前瞻性研究项目(YZ2014165)和上海市科技兴农重点攻关项目[沪农科攻字(2016)第6-1-1号]资助。

QTL Mapping for Leaf Morphological Traits of Rice Using Chromosome Segment Substitution Lines

ZHOU Yong,TAO Ya-Jun,YAO Rui,LI Chang,TAN Wen-Chen,YI Chuan-Deng,GONG Zhi-Yun, LIANG Guo-Hua*   

  1. Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, China
  • Received:2017-02-06 Revised:2017-05-10 Published:2017-11-12 Published online:2017-05-06
  • Contact: Jiang guohua, E-mail: ricegb@yzu.edu.cn

摘要:

水稻叶片形态是理想株型的重要组成部分,控制叶片形态基因的挖掘对于塑造水稻理想株型,实现水稻超高产目标具有重要意义。本研究利用广陆矮4号为受体亲本,日本晴为供体亲本构建的一套染色体片段代换系,对水稻上三叶(倒一叶、倒二叶和倒三叶)形态性状与单株籽粒产量进行了相关性分析,并开展了相关QTL定位。结果表明,除剑叶宽外,水稻上三叶的叶长、叶宽都与单株产量呈极显著正相关。同时,通过单因素方差分析和Dunnett’s多重比较,在两年间重复检测到20个控制叶形的QTL,其中叶长QTL 13个,8个表现正向效应,5个表现负向效应;叶宽QTL 7个,4个表现正向效应,3个表现负向效应。这些QTL的鉴定为水稻叶形性状的分子改良提供了重要遗传信息。

关键词: 水稻, 叶片形态, 染色体片段代换系, QTL

Abstract:

Leaf morphology is an important component of ideal plant architecture in rice. Therefore, identification of genes associated with leaf morphologic traits is helpful to shape rice ideal architecture and reach the aim of super high-yield. A set of chromosome segment substitution lines (CSSLs) derived from Guanglu’ai 4 (recipient) and Nipponbare (donor) were employed to detect quantitative trait loci (QTL) for the length and width of top three leaves (flag leaf, the second and third leaf from top). We also examined the correlation between the leaf traits and grain yield per plant, indicating that except for flag leaf width, other leaf traits were significantly and positively correlated with grain yield per plant. One-way ANOVA and Dunnett’s test were used to detect QTL related to size of rice top three leaves. Thirteen and seven QTL, for leaf length and width, respectively, were identified. Among them, eight and four QTL had positive effects, respectively. Identification of these QTL provides useful information for improving rice leaf morphologic traits.

Key words: Rice, Leaf morphology, Chromosome segment substitution lines, Quantitative trait loci

[1] Zhang Q F. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104: 16402–16409
[2] Yuan L P. Hybrid rice breeding for super high yield. Hybrid Rice, 1997, 12: 1–6
[3] 朱德峰. 国际水稻研究所水稻新株型的研究现状与新动向. 作物研究, 1996, (1): 35–36
   Zhu D F. Current status and new trends of research on new plant type of rice in international rice research institute. Crop Res, 1996, (1): 35–36 (in Chinese)
[4] 薛大伟, 钱前. 中国超级稻遗传基础与资源创新. 沈阳农业大学学报, 2007, 38: 667–675
Xue D W, Qian Q. Genetic basis and resources innovation of super rice breeding in China. J Shenyang Agric Univ, 2007, 38: 667–675 (in Chinese with English abstract)
[5] 唐文邦, 陈立云, 肖应辉, 蔡义东, 兰海. 水稻功能叶形态及光合速率与产量构成因素的相关研究. 湖南农业科学, 2004, (2): 29–31
   Tang W B, Chen L Y, Xiao Y H, Cai Y D, Lan H. Relations of photosynthetic ability and functional leaves features to rice yield and yield components. Hunan Agric Sci, 2004, (2): 29–31 (in Chinese with English abstract)
[6] 王永锐. 水稻生理育种. 北京: 科学技术文献出版社, 1995. pp 131–133
   Wang Y R. Physiological Breeding of Rice. Beijing: Scientific and Technical Documentation Press, 1995. pp 131–133 (in Chinese)
[7] Qi J, Qian Q, Bu Q Y, Li S Y, Chen Q, Sun J Q, Liang W X, Zhou Y H, Chu C C, Li X G. Mutation of the rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008, 147: 1947–1959
[8] Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719–735
[9] Yoon D B, Kang K H, Kim H J, Ju H G, Kwon S J, Suh J P, Jeong O Y, Ahn S N. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the Oryza sativa japonica cultivar Hwaseongbyeo. Theor Appl Genet, 2006, 112: 1052–1062
[10] Yue B, Xue W Y, Luo L J, Xing Y Z. QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genet Sin, 2006, 33: 824–832
[11] Tong H H, Mei H W, Xing Y Z, Cao Y P, Yu X Q, Zhang S Q, Luo L J. QTL analysis for morphological and physiological characteristics of flag leaf at the late developmental stage in rice. Chin J Rice Sci, 2007, 21: 493–499
[12] Wang P, Zhou G L, Yu H H, Yu S B. Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theor Appl Genet, 2011, 123: 1319–1330
[13] Zhu J Y, Niu Y C, Tao Y J, Wang J, Tai S S, Li J, Yang J, Zhong W G, Zhou Y, Liang G H. Construction of high-throughput genotyped chromosome segment substitution lines in rice (Oryaza sativa L.) and QTL mapping for heading date. Plant Breed, 2015, 134: 156–163
[14] Young D, Tankseley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989, 77: 95–101
[15] McCouch S R, Doerge R W. QTL mapping in rice. Trends Genet, 1995, 11: 482-487
[16] Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivater tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162
[17] Paterson A H, Deverna J W, Lanini B. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosome in an interspecies cross of tomato. Genetics, 1990, 124: 735–742
[18] Li Z K, Pinson S R, Stansel J W, Paterson A H. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed, 1998, 4: 419–426
[19] 周丽慧, 赵春芳, 赵凌, 张亚东, 朱镇, 陈涛, 赵庆勇, 姚姝, 于新, 王才林. 利用染色体片段置换系群体检测水稻叶片形态QTL. 中国水稻科学, 2013, 27: 26–34
    Zhou L H, Zhao C F, Zhao L, Zhang Y D, Zhu Z, Chen T, Zhao Q Y, Yao S, Yu X, Wang C L. QTL detection for leaf morphology of rice using chromosome segment substation lines. Chin J Rice Sci, 2013, 27: 26–34 (in Chinese with English abstract)
[20] 徐建军, 赵强, 赵元凤, 朱磊, 徐辰武, 顾铭洪, 韩斌, 梁国华. 利用重测序的水稻染色体片段代换系群体定位剑叶形态QTL. 中国水稻科学, 2011, 25: 483–487
Xu J J, Zhao Q, Zhao Y F, Zhu L, Xu C W, Gu M H, Han B, Liang G H. Mapping of QTLs for flag leaf shape using whole-genome re-sequenced chromosome segment substitution lines in rice. Chin J Rice Sci, 2011, 25: 483–487 (in Chinese with English abstract)
[21] 王智权, 刘喜, 江玲, 杨超, 刘世家, 陈亮明, 翟虎渠, 万建民. 利用染色体片段置换系(CSSLs)群体检测水稻剑叶形态性状QTL. 南京农业大学学报, 2010, 33(6): 1–6
    Wang Z Q, Liu X, Jiang L, Yang C, Liu S J, Chen L M, Zhai H Q, Wan J M. QTL detection for flag leaf morphological traits of rice in a population of chromosome segment substitution lines. J Nanjing Agric Univ, 2010, 33(6): 1–6 (in Chinese with English abstract)
[22] Cai J, Zhang M, Guo LB, Li X M, Bao JS, Ma L Y. QTLs for rice flag leaf traits in doubled haploid populations in different environments. Genet Mol Res, 2015, 14: 6786–6795
[23] Ujiie K, Yamamoto T, Yano M, Ishimaru K. Genetic factors determining varietal differences in characters affecting yield between two rice (Oryza sativa L.) varieties, Koshihikari and IR64. Genet Resour Crop Evol, 2016, 63: 97–123
[24] 李睿, 赵姝丽, 毛艇, 徐正进, 陈温福. 水稻剑叶形态性状QTL分析. 作物杂志, 2010, (3): 26–29
    Li R, Zhao S L, Mao T, Xu Z J, Chen W F. QTL analysis for rice flag leaf. Crops, 2010, (3): 26–29 (in Chinese)
[25] Fujita D, Trijatmiko K R, Tagle A G, Sapasap M V, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban RB, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin I H, Ishimaru T, Kobayashi N. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci USA, 2013, 110: 20431–20436
[26] Zhang G H, Li S Y, Wang L, Ye W J, Zeng D L, Rao Y C, Peng Y L, Hu J, Yang Y L, Xu J, Rem D Y, Gao Z Y, Zhu L, Dong G J, Hu X M, Yan M X, Guo L B, Li C Y, Qian Q. LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. Mol Plant, 2014, 7: 1350–1364
[27] Cho S H, Yoo S C, Zhang H, Pandeya D, Koh H J, Hwang J Y, Kim G T, Paek N C. The rice narrow leaf 2 and narrow leaf 3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol, 2013, 198: 1071–1084
[28] Cho S H, Kang K, Lee S H, Lee I J, Paek N C. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). J Exp Bot, 2016, 67: 1677–1687
[29] Ding Z Q, Lin Z F, Li Q, Wu M, Xiang C Y, Wang J F. DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice (Oryza sativa L.). Biochem Biophys Res Commun, 2015, 457: 133–140
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!